These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 130465)

  • 1. Phosphorylation of the red blood cell membrane during the active transport of C++.
    Cha YN; Lee KS
    J Gen Physiol; 1976 Feb; 67(2):251-61. PubMed ID: 130465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active uptake of Ca++ and Ca plus,plus-activated Mg++ ATPase in red cell membrane fragments.
    Cha YN; Shin BC; Lee KS
    J Gen Physiol; 1971 Feb; 57(2):202-15. PubMed ID: 5543418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium ion-dependent dephosphorylation of the Ca2+-ATPase of human red-cells by ADP.
    Rega AF; Garrahan PJ
    Biochim Biophys Acta; 1978 Feb; 507(1):182-4. PubMed ID: 146516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium movements across the membrane of human red cells.
    Schatzmann HJ; Vincenzi FF
    J Physiol; 1969 Apr; 201(2):369-95. PubMed ID: 4238381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of adenosine triphosphate on N-ethylmaleimide-induced modification of 30S dynein from Tetrahymena cilia.
    Shimizu T; Kimura I
    J Biochem; 1977 Jul; 82(1):165-73. PubMed ID: 19451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ATP on the intermediary steps of the reaction of the (Na+ plusK+)-dependent enzyme system. I. Studied by the use of N-ethylmaleimide inhibition as a tool.
    Skou JC
    Biochim Biophys Acta; 1974 Mar; 339(2):234-45. PubMed ID: 4279697
    [No Abstract]   [Full Text] [Related]  

  • 7. The pre-steady state of Na+-K+-dependent ATPase after addition of Na+ ions. Transition of the phosphorylated intermediate from an ADP-sensitive to an ADP-insensitive form.
    Fukushima Y; Tonomura Y
    J Biochem; 1975 Oct; 78(4):749-55. PubMed ID: 129469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstration of a phosphopeptide intermediate in the Mg ++ -dependent, Na + - and K + -stimulated adenosine triphosphatase reaction of the erythrocyte membrane.
    Avruch J; Fairbanks G
    Proc Natl Acad Sci U S A; 1972 May; 69(5):1216-20. PubMed ID: 4260901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane compartmentalized ATP and its preferential use by the Na,K-ATPase of human red cell ghosts.
    Proverbio F; Hoffman JF
    J Gen Physiol; 1977 May; 69(5):605-32. PubMed ID: 140926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand-induced conformational changes in the (Mg 2+ + Ca 2+ )-dependent ATPase of red cell membranes.
    Bond GH
    Biochim Biophys Acta; 1972 Nov; 288(2):423-33. PubMed ID: 4263663
    [No Abstract]   [Full Text] [Related]  

  • 11. Interaction of N-ethylmaleimide and Ca 2+ with human erythrocyte membrane ATPase.
    Blostein R; Burt VK
    Biochim Biophys Acta; 1971 Jul; 241(1):68-74. PubMed ID: 4256594
    [No Abstract]   [Full Text] [Related]  

  • 12. Calcium ion-dependent p-nitrophenyl phosphate phosphatase activity and calcium ion-dependent adenosine triphosphatase activity from human erythrocyte membranes.
    Rega AF; Richards DE; Garrahan PJ
    Biochem J; 1973 Sep; 136(1):185-94. PubMed ID: 4272534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gel electrophoretic identity of the (Na+ + Mg-2+)- and (Na+ + Ca-2+)-stimulated phosphorylations of rat brain ATPase.
    Tobin T; Akera T; Brody TM
    Biochim Biophys Acta; 1975 Apr; 389(1):117-25. PubMed ID: 124586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of bound potassium ions in the hydrolysis of low concentrations of adenosine triphosphate by preparations of membrane fragments from ox brain cerebral cortex.
    Goldfarb PS; Rodnight R
    Biochem J; 1970 Nov; 120(1):15-24. PubMed ID: 4250237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of Mg2+, nucleotides and ATPase inhibitors on the uptake of [3H]-cGMP to inside-out vesicles from human erythrocytes.
    Vaskinn S; Sundkvist E; Jaeger R; Sager G
    Mol Membr Biol; 1999; 16(2):181-8. PubMed ID: 10417983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic dependence of red cell deformability.
    Weed RI; LaCelle PL; Merrill EW
    J Clin Invest; 1969 May; 48(5):795-809. PubMed ID: 4388591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The sodium pump.
    Glynn IM; Karlish SJ
    Annu Rev Physiol; 1975; 37():13-55. PubMed ID: 123724
    [No Abstract]   [Full Text] [Related]  

  • 18. Phosphate from the phosphointermediate (EP) of the human red blood cell Na/K pump is coeffluxed with Na, in the absence of external K.
    Marín R; Hoffman JF
    J Gen Physiol; 1994 Jul; 104(1):1-32. PubMed ID: 7964591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium and magnesium ATPases of the spectrin fraction of human erythrocytes.
    Kirkpatrick FH; Woods GM; La Celle PL; Weed RI
    J Supramol Struct; 1975; 3(5-6):415-25. PubMed ID: 128659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of divalent metal ions on the calcium pump and membrane phosphorylation in human red cells.
    Enyedi A; Sarkadi B; Nyers A; Gárdos G
    Biochim Biophys Acta; 1982 Aug; 690(1):41-9. PubMed ID: 6812632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.