These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 1304858)

  • 1. Is dopamine a light-adaptive or a dark-adaptive modulator in retina?
    Besharse JC; Iuvone PM
    Neurochem Int; 1992 Feb; 20(2):193-9. PubMed ID: 1304858
    [No Abstract]   [Full Text] [Related]  

  • 2. [Retinomotor reaction of Oncorhynchus keta fry retina during adaptation to light and to the permanent magnetic field].
    Gniubkina VP; Maksimovich AA
    Morfologiia; 2007; 132(5):43-7. PubMed ID: 18198671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine induces light-adaptive retinomotor movements in bullfrog cones via D2 receptors and in retinal pigment epithelium via D1 receptors.
    Dearry A; Edelman JL; Miller S; Burnside B
    J Neurochem; 1990 Apr; 54(4):1367-78. PubMed ID: 2156019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas: II. Modulation by gamma-aminobutyric acid and serotonin.
    Dearry A; Burnside B
    J Neurochem; 1986 Apr; 46(4):1022-31. PubMed ID: 3950617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas: I. Induction of cone contraction is mediated by D2 receptors.
    Dearry A; Burnside B
    J Neurochem; 1986 Apr; 46(4):1006-21. PubMed ID: 2869104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of dopamine depletion on light-evoked and circadian retinomotor movements in the teleost retina.
    Douglas RH; Wagner HJ; Zaunreiter M; Behrens UD; Djamgoz MB
    Vis Neurosci; 1992; 9(3-4):335-43. PubMed ID: 1390391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-induced photoreceptor shedding in teleost retina blocked by dibutyryl cyclic AMP.
    Eckmiller MS; Burnside B
    Invest Ophthalmol Vis Sci; 1983 Sep; 24(9):1328-32. PubMed ID: 6309697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopaminergic control mechanisms of light adaptive processes in teleost retinal morphology.
    Wagner HJ
    Neurosci Res Suppl; 1991; 15():S131-43. PubMed ID: 1839172
    [No Abstract]   [Full Text] [Related]  

  • 9. Evidence for an endogenous clock in the retina of rainbow trout: I. Retinomotor movements, dopamine and melatonin.
    Zaunreiter M; Brandstätter R; Goldschmid A
    Neuroreport; 1998 Apr; 9(6):1205-9. PubMed ID: 9601695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light and circadian regulation of retinomotor movement.
    Burnside B
    Prog Brain Res; 2001; 131():477-85. PubMed ID: 11420964
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of extracellular Ca++, K+, and Na+ on cone and retinal pigment epithelium retinomotor movements in isolated teleost retinas.
    Dearry A; Burnside B
    J Gen Physiol; 1984 Apr; 83(4):589-611. PubMed ID: 6202826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparable effects of flickering and steady patterns of light adaptation on photomechanical responses of cones in amphibian (Xenopus laevis) retina.
    Angotzi AR; Hirano J; Haamedi S; Murgia R; Vallerga S; Djamgoz MB
    Neurosci Lett; 1999 Sep; 272(3):163-6. PubMed ID: 10505606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pineal gland does not control rod outer segment shedding and phagocytosis in the rat retina and pigment epithelium.
    Tamai M; Teirstein P; Goldman A; O'Brien P; Chader G
    Invest Ophthalmol Vis Sci; 1978 Jun; 17(6):558-62. PubMed ID: 566259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine inhibits forskolin- and 3-isobutyl-1-methylxanthine-induced dark-adaptive retinomotor movements in isolated teleost retinas.
    Dearry A; Burnside B
    J Neurochem; 1985 Jun; 44(6):1753-63. PubMed ID: 2580951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of cyclic adenosine 3',5'-monophosphate on photoreceptor disc shedding and retinomotor movement. Inhibition of rod shedding and stimulation of cone elongation.
    Besharse JC; Dunis DA; Burnside B
    J Gen Physiol; 1982 May; 79(5):775-90. PubMed ID: 6284860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-induced dopamine release from teleost retinas acts as a light-adaptive signal to the retinal pigment epithelium.
    Dearry A; Burnside B
    J Neurochem; 1989 Sep; 53(3):870-8. PubMed ID: 2547905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local control of retinomotor activity in the fish retina.
    Easter SS; Macy A
    Vision Res; 1978; 18(8):937-42. PubMed ID: 706169
    [No Abstract]   [Full Text] [Related]  

  • 18. [The ERG C-wave during adaptation to the dark and the light in the pigmented rabbit].
    Nao-i N; Honda Y
    Nippon Ganka Gakkai Zasshi; 1987 Jan; 91(1):168-73. PubMed ID: 3591576
    [No Abstract]   [Full Text] [Related]  

  • 19. Retinomotor pigment migration in the teleost retinal pigment epithelium. II. Cyclic-3',5'-adenosine monophosphate induction of dark-adaptive movement in vitro.
    Burnside B; Basinger S
    Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):16-23. PubMed ID: 6186630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prostaglandins E1, E2, and D2 induce dark-adaptive retinomotor movements in teleost retinal cones and RPE.
    Cavallaro B; Burnside B
    Invest Ophthalmol Vis Sci; 1988 Jun; 29(6):882-91. PubMed ID: 3131263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.