These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 1304882)

  • 1. Structure of a stabilizing disulfide bridge mutant that closes the active-site cleft of T4 lysozyme.
    Jacobson RH; Matsumura M; Faber HR; Matthews BW
    Protein Sci; 1992 Jan; 1(1):46-57. PubMed ID: 1304882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of a thermostable disulfide-bridge mutant of phage T4 lysozyme shows that an engineered cross-link in a flexible region does not increase the rigidity of the folded protein.
    Pjura PE; Matsumura M; Wozniak JA; Matthews BW
    Biochemistry; 1990 Mar; 29(10):2592-8. PubMed ID: 2334683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of a hinge-bending bacteriophage T4 lysozyme mutant, Ile3-->Pro.
    Dixon MM; Nicholson H; Shewchuk L; Baase WA; Matthews BW
    J Mol Biol; 1992 Oct; 227(3):917-33. PubMed ID: 1404394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mutant T4 lysozyme displays five different crystal conformations.
    Faber HR; Matthews BW
    Nature; 1990 Nov; 348(6298):263-6. PubMed ID: 2234094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple alanine replacements within alpha-helix 126-134 of T4 lysozyme have independent, additive effects on both structure and stability.
    Zhang XJ; Baase WA; Matthews BW
    Protein Sci; 1992 Jun; 1(6):761-76. PubMed ID: 1304917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction of a non-native disulfide bridge to human lysozyme by cysteine scanning mutagenesis.
    Kanaya E; Kanaya S; Kikuchi M
    Biochem Biophys Res Commun; 1990 Dec; 173(3):1194-9. PubMed ID: 2268322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of oxidized bacteriophage T4 glutaredoxin (thioredoxin). Refinement of native and mutant proteins.
    Eklund H; Ingelman M; Söderberg BO; Uhlin T; Nordlund P; Nikkola M; Sonnerstam U; Joelson T; Petratos K
    J Mol Biol; 1992 Nov; 228(2):596-618. PubMed ID: 1453466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions of engineered surface salt bridges to the stability of T4 lysozyme determined by directed mutagenesis.
    Sun DP; Sauer U; Nicholson H; Matthews BW
    Biochemistry; 1991 Jul; 30(29):7142-53. PubMed ID: 1854726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and thermodynamic analysis of the packing of two alpha-helices in bacteriophage T4 lysozyme.
    Daopin S; Alber T; Baase WA; Wozniak JA; Matthews BW
    J Mol Biol; 1991 Sep; 221(2):647-67. PubMed ID: 1920439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of phage T4 lysozyme by engineered disulfide bonds.
    Matsumura M; Becktel WJ; Levitt M; Matthews BW
    Proc Natl Acad Sci U S A; 1989 Sep; 86(17):6562-6. PubMed ID: 2671995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the crystal structure of bacteriophage T4 lysozyme at low, medium, and high ionic strengths.
    Bell JA; Wilson KP; Zhang XJ; Faber HR; Nicholson H; Matthews BW
    Proteins; 1991; 10(1):10-21. PubMed ID: 2062826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disulfide bonds and thermal stability in T4 lysozyme.
    Wetzel R; Perry LJ; Baase WA; Becktel WJ
    Proc Natl Acad Sci U S A; 1988 Jan; 85(2):401-5. PubMed ID: 3277175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unpaired cysteine-54 interferes with the ability of an engineered disulfide to stabilize T4 lysozyme.
    Perry LJ; Wetzel R
    Biochemistry; 1986 Feb; 25(3):733-9. PubMed ID: 3513834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of an engineered disulfide bond on the folding of T4 lysozyme at low temperatures.
    Anderson WD; Fink AL; Perry LJ; Wetzel R
    Biochemistry; 1990 Apr; 29(13):3331-7. PubMed ID: 2334694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enthalpic destabilization of a mutant human lysozyme lacking a disulfide bridge between cysteine-77 and cysteine-95.
    Kuroki R; Inaka K; Taniyama Y; Kidokoro S; Matsushima M; Kikuchi M; Yutani K
    Biochemistry; 1992 Sep; 31(35):8323-8. PubMed ID: 1525170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the interaction between charged side chains and the alpha-helix dipole using designed thermostable mutants of phage T4 lysozyme.
    Nicholson H; Anderson DE; Dao-pin S; Matthews BW
    Biochemistry; 1991 Oct; 30(41):9816-28. PubMed ID: 1911773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the effectiveness of proline substitutions and glycine replacements in increasing the stability of phage T4 lysozyme.
    Nicholson H; Tronrud DE; Becktel WJ; Matthews BW
    Biopolymers; 1992 Nov; 32(11):1431-41. PubMed ID: 1457724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of enzyme activity by an engineered disulfide bond.
    Matsumura M; Matthews BW
    Science; 1989 Feb; 243(4892):792-4. PubMed ID: 2916125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural studies of mutants of T4 lysozyme that alter hydrophobic stabilization.
    Matsumura M; Wozniak JA; Sun DP; Matthews BW
    J Biol Chem; 1989 Sep; 264(27):16059-66. PubMed ID: 2674124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an in vivo method to identify mutants of phage T4 lysozyme of enhanced thermostability.
    Pjura P; Matsumura M; Baase WA; Matthews BW
    Protein Sci; 1993 Dec; 2(12):2217-25. PubMed ID: 7507755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.