These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 1304900)
1. Characterization of the stabilizing effect of point mutations of pyruvate oxidase from Lactobacillus plantarum: protection of the native state by modulating coenzyme binding and subunit interaction. Risse B; Stempfer G; Rudolph R; Schumacher G; Jaenicke R Protein Sci; 1992 Dec; 1(12):1710-8. PubMed ID: 1304900 [TBL] [Abstract][Full Text] [Related]
2. Stability and reconstitution of pyruvate oxidase from Lactobacillus plantarum: dissection of the stabilizing effects of coenzyme binding and subunit interaction. Risse B; Stempfer G; Rudolph R; Möllering H; Jaenicke R Protein Sci; 1992 Dec; 1(12):1699-709. PubMed ID: 1304899 [TBL] [Abstract][Full Text] [Related]
3. The role of Val-265 for flavin adenine dinucleotide (FAD) binding in pyruvate oxidase: FTIR, kinetic, and crystallographic studies on the enzyme variant V265A. Wille G; Ritter M; Weiss MS; König S; Mäntele W; Hübner G Biochemistry; 2005 Apr; 44(13):5086-94. PubMed ID: 15794646 [TBL] [Abstract][Full Text] [Related]
4. The refined structures of a stabilized mutant and of wild-type pyruvate oxidase from Lactobacillus plantarum. Muller YA; Schumacher G; Rudolph R; Schulz GE J Mol Biol; 1994 Apr; 237(3):315-35. PubMed ID: 8145244 [TBL] [Abstract][Full Text] [Related]
5. Characterization of point mutations in patients with pyruvate dehydrogenase deficiency: role of methionine-181, proline-188, and arginine-349 in the alpha subunit. Tripatara A; Korotchkina LG; Patel MS Arch Biochem Biophys; 1999 Jul; 367(1):39-50. PubMed ID: 10375397 [TBL] [Abstract][Full Text] [Related]
6. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair. Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755 [TBL] [Abstract][Full Text] [Related]
7. Structure of the thiamine- and flavin-dependent enzyme pyruvate oxidase. Muller YA; Schulz GE Science; 1993 Feb; 259(5097):965-7. PubMed ID: 8438155 [TBL] [Abstract][Full Text] [Related]
8. Asn249Tyr substitution at the coenzyme binding domain activates Sulfolobus solfataricus alcohol dehydrogenase and increases its thermal stability. Giordano A; Cannio R; La Cara F; Bartolucci S; Rossi M; Raia CA Biochemistry; 1999 Mar; 38(10):3043-54. PubMed ID: 10074357 [TBL] [Abstract][Full Text] [Related]
9. Global analysis of the acid-induced and urea-induced unfolding of staphylococcal nuclease and two of its variants. Ionescu RM; Eftink MR Biochemistry; 1997 Feb; 36(5):1129-40. PubMed ID: 9033404 [TBL] [Abstract][Full Text] [Related]
10. Activation of thiamin diphosphate and FAD in the phosphatedependent pyruvate oxidase from Lactobacillus plantarum. Tittmann K; Proske D; Spinka M; Ghisla S; Rudolph R; Hübner G; Kern G J Biol Chem; 1998 May; 273(21):12929-34. PubMed ID: 9582325 [TBL] [Abstract][Full Text] [Related]
11. Toxoplasma gondii ferredoxin-NADP+ reductase: Role of ionic interactions in stabilization of native conformation and structural cooperativity. Singh K; Bhakuni V Proteins; 2008 Jun; 71(4):1879-88. PubMed ID: 18175327 [TBL] [Abstract][Full Text] [Related]
12. Characterization of C415 mutants of neuronal nitric oxide synthase. Richards MK; Clague MJ; Marletta MA Biochemistry; 1996 Jun; 35(24):7772-80. PubMed ID: 8672477 [TBL] [Abstract][Full Text] [Related]
13. Thiol modification and site directed mutagenesis of the flavin domain of spinach NADH:nitrate reductase. Trimboli AJ; Quinn GB; Smith ET; Barber MJ Arch Biochem Biophys; 1996 Jul; 331(1):117-26. PubMed ID: 8660690 [TBL] [Abstract][Full Text] [Related]
14. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase. Roitel O; Scrutton NS; Munro AW Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506 [TBL] [Abstract][Full Text] [Related]
15. Cytochrome b5 reductase: role of the si-face residues, proline 92 and tyrosine 93, in structure and catalysis. Marohnic CC; Crowley LJ; Davis CA; Smith ET; Barber MJ Biochemistry; 2005 Feb; 44(7):2449-61. PubMed ID: 15709757 [TBL] [Abstract][Full Text] [Related]
16. A mutant sarcosine oxidase in which activity depends on flavin adenine dinucleotide. Nishiya Y Protein Expr Purif; 2000 Oct; 20(1):95-7. PubMed ID: 11035956 [TBL] [Abstract][Full Text] [Related]
17. Stabilization of human triosephosphate isomerase by improvement of the stability of individual alpha-helices in dimeric as well as monomeric forms of the protein. Mainfroid V; Mande SC; Hol WG; Martial JA; Goraj K Biochemistry; 1996 Apr; 35(13):4110-7. PubMed ID: 8672446 [TBL] [Abstract][Full Text] [Related]
18. Probing pH-dependent functional elements in proteins: modification of carboxylic acid pairs in Trichoderma reesei cellobiohydrolase Cel6A. Wohlfahrt G; Pellikka T; Boer H; Teeri TT; Koivula A Biochemistry; 2003 Sep; 42(34):10095-103. PubMed ID: 12939137 [TBL] [Abstract][Full Text] [Related]
19. Cytochrome b5 reductase: the roles of the recessive congenital methemoglobinemia mutants P144L, L148P, and R159*. Davis CA; Crowley LJ; Barber MJ Arch Biochem Biophys; 2004 Nov; 431(2):233-44. PubMed ID: 15488472 [TBL] [Abstract][Full Text] [Related]
20. Cooperative folding of a protein mini domain: the peripheral subunit-binding domain of the pyruvate dehydrogenase multienzyme complex. Spector S; Kuhlman B; Fairman R; Wong E; Boice JA; Raleigh DP J Mol Biol; 1998 Feb; 276(2):479-89. PubMed ID: 9512717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]