These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 13061457)

  • 1. Lactose metabolism. I. Carbohydrate metabolism of Lactobacillus bulgaricus strain Gere A.
    RUTTER WJ; HANSEN RG
    J Biol Chem; 1953 May; 202(1):311-21. PubMed ID: 13061457
    [No Abstract]   [Full Text] [Related]  

  • 2. Lactose metabolism. II. The conversion of galactose to glucose derivatives in Lactobacillus bulgaricus strain Gere A.
    RUTTER WJ; HANSEN RG
    J Biol Chem; 1953 May; 202(1):323-30. PubMed ID: 13061458
    [No Abstract]   [Full Text] [Related]  

  • 3. Enhancing the Sweetness of Yoghurt through Metabolic Remodeling of Carbohydrate Metabolism in Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus.
    Sørensen KI; Curic-Bawden M; Junge MP; Janzen T; Johansen E
    Appl Environ Microbiol; 2016 Jun; 82(12):3683-3692. PubMed ID: 27107115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The synthesis in vivo of lactose from glucose-1-C14 and galactose-1-C14 in the guinea pig.
    PAZUR JH; TIPTON CL
    J Biol Chem; 1957 Jan; 224(1):381-5. PubMed ID: 13398414
    [No Abstract]   [Full Text] [Related]  

  • 5. The mechanism of the galactose-glucose interconversion in Lactobacillus bulgaricus.
    KOSHLAND DE; KOWALSKY A
    Biochim Biophys Acta; 1956 Dec; 22(3):575-7. PubMed ID: 13382892
    [No Abstract]   [Full Text] [Related]  

  • 6. Rates of oxidation of galactose and glucose in erythrocytes and liver after lactose feeding.
    CHOWDHURY A; SADHU DP
    Biochem J; 1959 Apr; 71(4):624-6. PubMed ID: 13651106
    [No Abstract]   [Full Text] [Related]  

  • 7. Low-sugar yogurt making by the co-cultivation of Lactobacillus plantarum WCFS1 with yogurt starter cultures.
    Zhang SS; Xu ZS; Qin LH; Kong J
    J Dairy Sci; 2020 Apr; 103(4):3045-3054. PubMed ID: 32059863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of sugars by Lactobacillus acidophilus strains.
    Srinivas D; Mital BK; Garg SK
    Int J Food Microbiol; 1990 Jan; 10(1):51-7. PubMed ID: 2118792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the metabolism of C14-labeled lactose, glucose, and galactose in rats.
    CARLETON FJ; MISLER S; ROBERTS HR
    J Biol Chem; 1955 May; 214(1):427-40. PubMed ID: 14367399
    [No Abstract]   [Full Text] [Related]  

  • 10. Exopolysaccharides produced by mixed culture of yeast Rhodotorula rubra GED10 and yogurt bacteria (Streptococcus thermophilus 13a + Lactobacillus bulgaricus 2-11).
    Simova ED; Frengova GI; Beshkova DM
    J Appl Microbiol; 2004; 97(3):512-9. PubMed ID: 15281931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modes of lactose uptake in the yeast species Kluyveromyces marxianus.
    Carvalho-Silva M; Spencer-Martins I
    Antonie Van Leeuwenhoek; 1990 Feb; 57(2):77-81. PubMed ID: 2321931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of carbohydrate fraction in carbonated fermented milks as affected by beta-galactosidase activity of starter strains.
    Guetmonde M; Nieves C; Vinderola G; Reinheimer J; de los Reyes-Gavilan CG
    J Dairy Res; 2002 Feb; 69(1):125-37. PubMed ID: 12047103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of prolonged consumption of lactose or hydrolyzed lactose in the rat. 5. Intestinal metabolism of glucose and galactose].
    Poiffait A; David C; Adrian J
    Int J Vitam Nutr Res; 1983; 53(4):427-31. PubMed ID: 6668144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative studies on the metabolism of lactose, glucose and galactose in liquid cultures of E. coli.
    OPIENSKA-BLAUTH J; MADECKA-BORKOWSKA I; BORKOWSKI T
    Nature; 1952 May; 169(4306):798-9. PubMed ID: 14941048
    [No Abstract]   [Full Text] [Related]  

  • 15. 13C-carbohydrate breath tests: impact of physical activity on the rate-limiting step in lactose utilization.
    Stellaard F; Koetse HA; Elzinga H; Boverhof R; Tjoonk R; Klimp A; Vegter D; Liesker J; Vonk RJ
    Scand J Gastroenterol; 2000 Aug; 35(8):819-23. PubMed ID: 10994620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Galactose-containing carbohydrates are preferentially absorbed in the neonatal pig colon.
    Murray RD; Ailabouni A; Heitlinger LA; Li BU; McClung HJ; Powers P; Gutt J; Kien CL
    Pediatr Res; 1996 Apr; 39(4 Pt 1):656-60. PubMed ID: 8848341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and metabolism of Bifidobacterium adolescentis MB 239 growing on glucose, galactose, lactose, and galactooligosaccharides.
    Amaretti A; Bernardi T; Tamburini E; Zanoni S; Lomma M; Matteuzzi D; Rossi M
    Appl Environ Microbiol; 2007 Jun; 73(11):3637-44. PubMed ID: 17434997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genes involved in lactose catabolism and organic acid production during growth of Lactobacillus delbrueckii UFV H2b20 in skimmed milk.
    Do Carmo AP; De Oliveira MN; Da Silva DF; Castro SB; Borges AC; De Carvalho AF; De Moraes CA
    Benef Microbes; 2012 Mar; 3(1):23-32. PubMed ID: 22348906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compartmentation of the metabolism of lactose, galactose and glucose in Escherichia coli.
    McBrien DC; Moses V
    J Gen Microbiol; 1968 Apr; 51(2):159-72. PubMed ID: 4870838
    [No Abstract]   [Full Text] [Related]  

  • 20. Enzymatic synthesis of lactose from uridine diphosphate D-galactose and D-glucose.
    WATKINS WM; HASSID WZ
    Biochem Biophys Res Commun; 1961 Jul; 5():260-4. PubMed ID: 13783402
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.