These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 13061458)

  • 1. Lactose metabolism. II. The conversion of galactose to glucose derivatives in Lactobacillus bulgaricus strain Gere A.
    RUTTER WJ; HANSEN RG
    J Biol Chem; 1953 May; 202(1):323-30. PubMed ID: 13061458
    [No Abstract]   [Full Text] [Related]  

  • 2. Lactose metabolism. I. Carbohydrate metabolism of Lactobacillus bulgaricus strain Gere A.
    RUTTER WJ; HANSEN RG
    J Biol Chem; 1953 May; 202(1):311-21. PubMed ID: 13061457
    [No Abstract]   [Full Text] [Related]  

  • 3. Lactose metabolism. III. The reversible conversion of galactose-1-phosphatase to glucose-1-phosphate.
    HANSEN RG; CRAINE EM
    J Biol Chem; 1954 May; 208(1):293-8. PubMed ID: 13174537
    [No Abstract]   [Full Text] [Related]  

  • 4. Enhancing the Sweetness of Yoghurt through Metabolic Remodeling of Carbohydrate Metabolism in Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus.
    Sørensen KI; Curic-Bawden M; Junge MP; Janzen T; Johansen E
    Appl Environ Microbiol; 2016 Jun; 82(12):3683-3692. PubMed ID: 27107115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The potential of species-specific tagatose-6-phosphate (T6P) pathway in Lactobacillus casei group for galactose reduction in fermented dairy foods.
    Wu Q; Shah NP
    Food Microbiol; 2017 Apr; 62():178-187. PubMed ID: 27889146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactose metabolism. IV. The function of uridine triphosphate in the interconversion of galactose-1-phosphate and glucose-1-phosphate.
    HANSEN RG; FREEDLAND RA
    J Biol Chem; 1955 Sep; 216(1):303-7. PubMed ID: 13252029
    [No Abstract]   [Full Text] [Related]  

  • 7. The mechanism of the galactose-glucose interconversion in Lactobacillus bulgaricus.
    KOSHLAND DE; KOWALSKY A
    Biochim Biophys Acta; 1956 Dec; 22(3):575-7. PubMed ID: 13382892
    [No Abstract]   [Full Text] [Related]  

  • 8. Low-sugar yogurt making by the co-cultivation of Lactobacillus plantarum WCFS1 with yogurt starter cultures.
    Zhang SS; Xu ZS; Qin LH; Kong J
    J Dairy Sci; 2020 Apr; 103(4):3045-3054. PubMed ID: 32059863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Galactose I-phosphate in the intestinal tissue of the rat during galactose absorption.
    DIEDRICH DF; ANDERSON L
    Biochim Biophys Acta; 1960 Dec; 45():490-8. PubMed ID: 13722741
    [No Abstract]   [Full Text] [Related]  

  • 10. Catabolite inhibition: a general phenomenon in the control of carbohydrate utilization.
    McGinnis JF; Paigen K
    J Bacteriol; 1969 Nov; 100(2):902-13. PubMed ID: 4901365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbohydrate accumulation and metabolism in Escherichia coli. I. Description of pleiotropic mutants.
    Wang RJ; Morse ML
    J Mol Biol; 1968 Feb; 32(1):59-66. PubMed ID: 4868120
    [No Abstract]   [Full Text] [Related]  

  • 12. Estimation of the pentose cycle in the perfused cow's udder.
    Wood HG; Peeters GJ; Verbeke R; Lauryssens M; Jacobson B
    Biochem J; 1965 Sep; 96(3):607-15. PubMed ID: 5862402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactose and D0galactose metabolism in Staphylococcus aureus: pathway of D-galactose 6-phosphate degradation.
    Bissett DL; Anderson RL
    Biochem Biophys Res Commun; 1973 May; 52(2):641-7. PubMed ID: 4711177
    [No Abstract]   [Full Text] [Related]  

  • 14. Comparison of the metabolism of C14-labeled lactose, glucose, and galactose in rats.
    CARLETON FJ; MISLER S; ROBERTS HR
    J Biol Chem; 1955 May; 214(1):427-40. PubMed ID: 14367399
    [No Abstract]   [Full Text] [Related]  

  • 15. Utilization of sugars by Lactobacillus acidophilus strains.
    Srinivas D; Mital BK; Garg SK
    Int J Food Microbiol; 1990 Jan; 10(1):51-7. PubMed ID: 2118792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The synthesis in vivo of lactose from glucose-1-C14 and galactose-1-C14 in the guinea pig.
    PAZUR JH; TIPTON CL
    J Biol Chem; 1957 Jan; 224(1):381-5. PubMed ID: 13398414
    [No Abstract]   [Full Text] [Related]  

  • 17. Rates of oxidation of galactose and glucose in erythrocytes and liver after lactose feeding.
    CHOWDHURY A; SADHU DP
    Biochem J; 1959 Apr; 71(4):624-6. PubMed ID: 13651106
    [No Abstract]   [Full Text] [Related]  

  • 18. Sugar transport. VII. Lactose transport in Staphylococcus aureus.
    Simoni RD; Roseman S
    J Biol Chem; 1973 Feb; 248(3):966-74. PubMed ID: 4684717
    [No Abstract]   [Full Text] [Related]  

  • 19. [On the role of carbohydrate mechanisms in the regulation of accumulation and storage of fructosediphosphate in Escherichia coli].
    Gershanovich VN; Iurovitskaia NV; Kliucheva VV
    Biokhimiia; 1968; 33(3):576-82. PubMed ID: 4234233
    [No Abstract]   [Full Text] [Related]  

  • 20. Alternative pathways of carbohydrate utilization in pseudomonads.
    Lessie TG; Phibbs PV
    Annu Rev Microbiol; 1984; 38():359-88. PubMed ID: 6388497
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.