These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 1306744)

  • 1. [The contractile properties of the frog muscle fiber in the intact and the skinned states].
    Sobol' KV; Nasledov GA
    Fiziol Zh Im I M Sechenova; 1992 Dec; 78(12):101-8. PubMed ID: 1306744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contraction kinetics of intact and skinned frog muscle fibers and degree of activation. Effects of intracellular Ca2+ on unloaded shortening.
    Gulati J; Babu A
    J Gen Physiol; 1985 Oct; 86(4):479-500. PubMed ID: 3877145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The high-force region of the force-velocity relation in frog skinned muscle fibres.
    Lou F; Sun YB
    Acta Physiol Scand; 1993 Jul; 148(3):243-52. PubMed ID: 8213180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tension in frog single muscle fibers while shortening actively and passively at velocities near Vu.
    Morgan DL; Claflin DR; Julian FJ
    Biophys J; 1990 May; 57(5):1001-7. PubMed ID: 2340339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of sarcomere shortening in skinned fibers from frog muscle by white light diffraction.
    Goldman YE
    Biophys J; 1987 Jul; 52(1):57-68. PubMed ID: 3496924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approximating the isometric force-calcium relation of intact frog muscle using skinned fibers.
    Maughan DW; Molloy JE; Brotto MA; Godt RE
    Biophys J; 1995 Oct; 69(4):1484-90. PubMed ID: 8534819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depression of force by phosphate in skinned skeletal muscle fibers of the frog.
    Stienen GJ; Roosemalen MC; Wilson MG; Elzinga G
    Am J Physiol; 1990 Aug; 259(2 Pt 1):C349-57. PubMed ID: 2143356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in contractile dynamics during the course of a twitch of a frog muscle fibre.
    Haugen P
    J Muscle Res Cell Motil; 1987 Oct; 8(5):448-60. PubMed ID: 3501435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contractile properties of bundles of fiber segments from skeletal muscles.
    Faulkner JA; Claflin DR; McCully KK; Jones DA
    Am J Physiol; 1982 Jul; 243(1):C66-73. PubMed ID: 6979939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double-hyperbolic nature of the force-velocity relation in frog skeletal muscle.
    Edman KA
    Adv Exp Med Biol; 1988; 226():643-52. PubMed ID: 3261494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force-velocity relation for frog muscle fibres: effects of moderate fatigue and of intracellular acidification.
    Curtin NA; Edman KA
    J Physiol; 1994 Mar; 475(3):483-94. PubMed ID: 8006830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of passive tension on unloaded shortening speed of frog single muscle fibers.
    Claflin DR; Morgan DL; Julian FJ
    Biophys J; 1989 Nov; 56(5):967-77. PubMed ID: 2605306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic shortening speed of temperature-jump-activated intact muscle fibers. Effects of varying osmotic pressure with sucrose and KCl.
    Gulati J; Babu A
    Biophys J; 1984 Feb; 45(2):431-45. PubMed ID: 6607750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in contractile properties with selective digestion of connectin (titin) in skinned fibers of frog skeletal muscle.
    Higuchi H
    J Biochem; 1992 Mar; 111(3):291-5. PubMed ID: 1587789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of force production in compressed skinned muscle fibers of the frog.
    Maughan DW; Godt RE
    Pflugers Arch; 1981 May; 390(2):161-3. PubMed ID: 6972521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skinned fibres produce the same power and force as intact fibre bundles from muscle of wild rabbits.
    Curtin NA; Diack RA; West TG; Wilson AM; Woledge RC
    J Exp Biol; 2015 Sep; 218(Pt 18):2856-63. PubMed ID: 26206354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of phosphate and ADP on shortening velocity during maximal and submaximal calcium activation of the thin filament in skeletal muscle fibers.
    Metzger JM
    Biophys J; 1996 Jan; 70(1):409-17. PubMed ID: 8770217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tonicity effects on intact single muscle fibers: relation between force and cell volume.
    Gulati J; Babu A
    Science; 1982 Feb; 215(4536):1109-12. PubMed ID: 6977845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lattice shrinkage with increasing resting tension in stretched, single skinned fibers of frog muscle.
    Higuchi H; Umazume Y
    Biophys J; 1986 Sep; 50(3):385-9. PubMed ID: 3489489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tension responses of frog skeletal muscle to ramp and step length changes.
    Bressler BH
    Can J Physiol Pharmacol; 1985 Dec; 63(12):1617-20. PubMed ID: 3879460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.