These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 1307242)

  • 1. Hormones, genetic program and immunosenescence.
    Goya RG
    Exp Clin Immunogenet; 1992; 9(4):188-94. PubMed ID: 1307242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasticity of neuroendocrine-immune interactions during aging.
    Fabris N
    Acta Neurol (Napoli); 1991 Oct; 13(5):403-9. PubMed ID: 1776528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involution of the mammalian thymus, one of the leading regulators of aging.
    Bodey B; Bodey B; Siegel SE; Kaiser HE
    In Vivo; 1997; 11(5):421-40. PubMed ID: 9427047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-associated remodeling of thymopoiesis: role for gonadal hormones and catecholamines.
    Leposavić G; Perisić M
    Neuroimmunomodulation; 2008; 15(4-6):290-322. PubMed ID: 19047807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuroendocrine-thymus interactions: perspectives for intervention in aging.
    Fabris N; Mocchegiani E; Muzzioli M; Provinciali M
    Ann N Y Acad Sci; 1988; 521():72-87. PubMed ID: 3288046
    [No Abstract]   [Full Text] [Related]  

  • 6. Role of neuroimmunomodulation in aging.
    De la Fuente M
    Neuroimmunomodulation; 2008; 15(4-6):213-23. PubMed ID: 19047799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticity of neuroendocrine-thymus interactions during ontogeny and ageing: role of zinc and arginine.
    Mocchegiani E; Santarelli L; Costarelli L; Cipriano C; Muti E; Giacconi R; Malavolta M
    Ageing Res Rev; 2006 Aug; 5(3):281-309. PubMed ID: 16904953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evolutionary perspective on the mechanisms of immunosenescence.
    Shanley DP; Aw D; Manley NR; Palmer DB
    Trends Immunol; 2009 Jul; 30(7):374-81. PubMed ID: 19541538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The immune-neuroendocrine homeostatic network and aging.
    Goya RG
    Gerontology; 1991; 37(4):208-13. PubMed ID: 1916311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gender-specific neuroimmunoendocrine aging in a triple-transgenic 3xTg-AD mouse model for Alzheimer's disease and its relation with longevity.
    Giménez-Llort L; Arranz L; Maté I; De la Fuente M
    Neuroimmunomodulation; 2008; 15(4-6):331-43. PubMed ID: 19047809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecoimmunology: is there any room for the neuroendocrine system?
    Ottaviani E; Malagoli D; Capri M; Franceschi C
    Bioessays; 2008 Sep; 30(9):868-74. PubMed ID: 18693265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of zinc in pre- and postnatal mammalian thymic immunohistogenesis.
    Bodey B; Bodey B; Siegel SE; Kaiser HE
    In Vivo; 1998; 12(6):695-722. PubMed ID: 9891234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can the immune system still be efficient in the elderly? An immunological and immunoendocrine therapeutic perspective.
    Pfister G; Savino W
    Neuroimmunomodulation; 2008; 15(4-6):351-64. PubMed ID: 19047811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Not wisely but too well: aging as a cost of neuroendocrine activity.
    Mobbs CV
    Sci Aging Knowledge Environ; 2004 Sep; 2004(35):pe33. PubMed ID: 15342923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of the neuroendocrine system on thymus and bone marrow function.
    Barnard A; Layton D; Hince M; Sakkal S; Bernard C; Chidgey A; Boyd R
    Neuroimmunomodulation; 2008; 15(1):7-18. PubMed ID: 18667795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The thymus-pituitary axis and its changes during aging.
    Goya RG; Brown OA; Bolognani F
    Neuroimmunomodulation; 1999; 6(1-2):137-42. PubMed ID: 9876244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasticity of neuro-endocrine-thymus interactions during aging--a minireview.
    Fabris N; Mocchegiani E; Provinciali M
    Cell Mol Biol (Noisy-le-grand); 1997 Jun; 43(4):529-41. PubMed ID: 9220146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryptocrine signaling in the thymus network. Implications for central T-cell tolerance of neuroendocrine functions.
    Geenen V; Cormann-Goffin N; Vandersmissen E; Martens H; Benhida A; Martial J; Franchimont P
    Ann N Y Acad Sci; 1994 Nov; 741():85-99. PubMed ID: 7825830
    [No Abstract]   [Full Text] [Related]  

  • 19. The role of sex steroids and gonadectomy in the control of thymic involution.
    Hince M; Sakkal S; Vlahos K; Dudakov J; Boyd R; Chidgey A
    Cell Immunol; 2008; 252(1-2):122-38. PubMed ID: 18294626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thymic T-cell tolerance of neuroendocrine functions: physiology and pathophysiology.
    Geenen V; Kecha O; Brilot F; Hansenne I; Renard C; Martens H
    Cell Mol Biol (Noisy-le-grand); 2001 Feb; 47(1):179-88. PubMed ID: 11292253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.