These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 13082389)

  • 1. Inactivation of DDT deposits on mud surfaces.
    BORDAS E; DOWNS WG; NAVARRO L
    Bull World Health Organ; 1953; 9(1):39-57. PubMed ID: 13082389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption of 75 per cent DDT water-dispersible powder on different mud surfaces.
    BAMI HL
    Bull World Health Organ; 1961; 24(4-5):567-75. PubMed ID: 13686503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption and absorption of dichlorodiphenyltrichloroethane (DDT) and metabolites (DDD and DDE) by rice roots.
    Chen SH; Xu FL; Dawson R; Jiao XC; Tao S
    Environ Pollut; 2007 May; 147(1):256-61. PubMed ID: 17045374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PCDD/F formation during thermal desorption of p,p'-DDT contaminated soil.
    Zhao Z; Ni M; Li X; Buekens A; Yan J
    Environ Sci Pollut Res Int; 2017 May; 24(15):13659-13665. PubMed ID: 28397117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of p,p'-DDT and p,p'-DDE in highly and long-term contaminated soil using Fenton reaction in a slurry system.
    Dalla Villa R; Pupo Nogueira RF
    Sci Total Environ; 2006 Dec; 371(1-3):11-8. PubMed ID: 16782172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer of DDT and metabolites from fruit orchard soils to American robins (Turdus migratorius) twenty years after agricultural use of DDT in Canada.
    Harris ML; Wilson LK; Elliott JE; Bishop CA; Tomlin AD; Henning KV
    Arch Environ Contam Toxicol; 2000 Aug; 39(2):205-20. PubMed ID: 10871424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dechlorination of DDT, DDD and DDE in soil (slurry) phase using magnesium/palladium system.
    Gautam SK; Suresh S
    J Colloid Interface Sci; 2006 Dec; 304(1):144-51. PubMed ID: 16996073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxalate and root exudates enhance the desorption of p,p'-DDT from soils.
    Luo L; Zhang S; Shan XQ; Zhu YG
    Chemosphere; 2006 May; 63(8):1273-9. PubMed ID: 16307790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic transformation of DDT related to iron(III) reduction and microbial community structure in paddy soils.
    Chen M; Cao F; Li F; Liu C; Tong H; Wu W; Hu M
    J Agric Food Chem; 2013 Mar; 61(9):2224-33. PubMed ID: 23402620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of DDT and PCB by Nanomaterials from Residual Soil.
    Taha MR; Mobasser S
    PLoS One; 2015; 10(12):e0144071. PubMed ID: 26659225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods.
    El-Temsah YS; Joner EJ
    Chemosphere; 2013 Jun; 92(1):131-7. PubMed ID: 23522781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale zerovalent iron-mediated degradation of DDT in soil.
    Han Y; Shi N; Wang H; Pan X; Fang H; Yu Y
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6253-63. PubMed ID: 26611630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of Mn2+, Ni2+, Cu2+, Co2+ and Zn2+ ions on pesticide adsorption and mobility in a tropical soil.
    Lalah JO; Njogu SN; Wandiga SO
    Bull Environ Contam Toxicol; 2009 Sep; 83(3):352-8. PubMed ID: 19434352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organochlorine pesticides in soils from south-western Uganda.
    Ssebugere P; Wasswa J; Mbabazi J; Nyanzi SA; Kiremire BT; Marco JA
    Chemosphere; 2010 Mar; 78(10):1250-5. PubMed ID: 20064653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioavailable DDT residues in sediments: laboratory assessment of ageing effects using semi-permeable membrane devices.
    Menchai P; Van Zwieten L; Kimber S; Ahmad N; Rao PS; Hose G
    Environ Pollut; 2008 May; 153(1):110-8. PubMed ID: 17854959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concentrations of DDTs and enantiomeric fractions of chiral DDTs in agricultural soils from Zhejiang Province, China, and correlations with total organic carbon and pH.
    Zhang A; Chen Z; Ahrens L; Liu W; Li YF
    J Agric Food Chem; 2012 Aug; 60(34):8294-301. PubMed ID: 22867105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organochlorine pesticides in soils from a typical alluvial plain of the Yangtze River Delta region, China.
    Hu W; Huang B; Zhao Y; Sun W; Gu Z
    Bull Environ Contam Toxicol; 2011 Nov; 87(5):561-6. PubMed ID: 21785876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Survival, growth, detoxifying and antioxidative responses of earthworms (Eisenia fetida) exposed to soils with industrial DDT contamination.
    Shi Y; Zhang Q; Huang D; Zheng X; Shi Y
    Pestic Biochem Physiol; 2016 Mar; 128():22-9. PubMed ID: 26969436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic adsorption and plant availability in an agricultural soil irrigated with As-rich water: Effects of Fe-rich amendments and organic and inorganic fertilisers.
    Arco-Lázaro E; Pardo T; Clemente R; Bernal MP
    J Environ Manage; 2018 Mar; 209():262-272. PubMed ID: 29306143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation into the problem of insecticide sorption by soils.
    GEROLT P
    Bull World Health Organ; 1961; 24(4-5):577-91. PubMed ID: 13704711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.