BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 130924)

  • 41. Energization of phenylalanine transport and energy-dependent transhydrogenase by ATP in cytochrome-deficient Escherichia coli K12.
    Singh AP; Bragg PD
    Biochem Biophys Res Commun; 1974 Apr; 57(4):1200-6. PubMed ID: 4151532
    [No Abstract]   [Full Text] [Related]  

  • 42. Influence of nitrate on fermentation pattern, molar growth yields and synthesis of cytochrome b in Propionibacterium pentosaceum.
    Van Gent-Ruijters ML; DeVries W; Southamer AH
    J Gen Microbiol; 1975 May; 88(1):36-48. PubMed ID: 168306
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification and localization of enzymes of the fumarate reductase and nitrate respiration systems of escherichia coli by crossed immunoelectrophoresis.
    van der Plas J; Hellingwerf KJ; Seijen HG; Guest JR; Weiner JH; Konings WN
    J Bacteriol; 1983 Feb; 153(2):1027-37. PubMed ID: 6218154
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Active transport in Escherichia coli B membrane vesicles. Differential inactivating effects from the enzymatic oxidation of beta-chloro-L-alanine and beta-chloro-D-alanine.
    Kaczorowski G; Shaw L; Laura R; Walsh C
    J Biol Chem; 1975 Dec; 250(23):8921-30. PubMed ID: 1104610
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nitrate, fumarate, and oxygen as electron acceptors for a late step in microbial heme synthesis.
    Jacobs NJ; Jacobs JM
    Biochim Biophys Acta; 1976 Oct; 449(1):1-9. PubMed ID: 788792
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ATP-dependent proton translocation and quenching of 9-aminoacridine fluorescence in inside-out membrane vesicles of a cytochrome-deficient mutant of Escherichia coli,
    Singh AP; Bragg PD
    Biochim Biophys Acta; 1977 Feb; 464(3):562-70. PubMed ID: 65180
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Generation of ATP during cytochrome-linked anaerobic electron transport in propionic acid bacteria.
    de Vries W; van Wyck-Kapteyn WM; Stouthamer AH
    J Gen Microbiol; 1973 May; 76(1):31-41. PubMed ID: 4353042
    [No Abstract]   [Full Text] [Related]  

  • 48. Metabolite transport in mutants of Escherichia coli K12 defective in electron transport and coupled phosphorylation.
    Rosenberg H; Cox GB; Butlin JD; Gutowski SJ
    Biochem J; 1975 Feb; 146(2):417-23. PubMed ID: 125586
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electron-transport phosphorylation coupled to fumarate reduction in anaerobically grown Proteus rettgeri.
    Kröger A
    Biochim Biophys Acta; 1974 May; 347(2):273-89. PubMed ID: 4407318
    [No Abstract]   [Full Text] [Related]  

  • 50. Coupling of energy to active transport of amino acids in Escherichia coli.
    Simoni RD; Shallenberger MK
    Proc Natl Acad Sci U S A; 1972 Sep; 69(9):2663-7. PubMed ID: 4341704
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Proteins of the inner membrane of Escherichia coli: changes in composition associated with anaerobic growth and fumarate reductase amber mutation.
    Spencer ME; Guest JR
    J Bacteriol; 1974 Mar; 117(3):954-9. PubMed ID: 4591961
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anaerobic expression of Escherichia coli succinate dehydrogenase: functional replacement of fumarate reductase in the respiratory chain during anaerobic growth.
    Maklashina E; Berthold DA; Cecchini G
    J Bacteriol; 1998 Nov; 180(22):5989-96. PubMed ID: 9811659
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Proton translocation coupled to electron flow from endogenous substrates to fumarate in anaerobically grown Escherichia coli K12.
    Gutowski SJ; Rosenberg H
    Biochem J; 1977 Apr; 164(1):265-7. PubMed ID: 18144
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stimulation of transport into Escherichia coli membrane vesicles by internally generated reduced nictotinamide adenine dinucleotide.
    Futai M
    J Bacteriol; 1974 Nov; 120(2):861-5. PubMed ID: 4156360
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A relation between amino acid hydrophobicity and rate of uptake in Escherichia coli.
    Sprott GD; Wood JM; Martin WG; Schneider H
    Biochem Biophys Res Commun; 1977 Jun; 76(4):1099-106. PubMed ID: 20084
    [No Abstract]   [Full Text] [Related]  

  • 56. Multiple regulatory elements for the glpA operon encoding anaerobic glycerol-3-phosphate dehydrogenase and the glpD operon encoding aerobic glycerol-3-phosphate dehydrogenase in Escherichia coli: further characterization of respiratory control.
    Iuchi S; Cole ST; Lin EC
    J Bacteriol; 1990 Jan; 172(1):179-84. PubMed ID: 2403539
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Na+ translocation by complex I (NADH:quinone oxidoreductase) of Escherichia coli.
    Steuber J; Schmid C; Rufibach M; Dimroth P
    Mol Microbiol; 2000 Jan; 35(2):428-34. PubMed ID: 10652103
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Active transport in Excherichia coli B membrane vesicles. Irreversible uncoupling by chloropyruvate.
    Kaczorowski G; Walsh C
    J Biol Chem; 1975 Dec; 250(23):8931-7. PubMed ID: 1104611
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional mosaicism of membrane proteins in vesicles of Escherichia coli.
    Adler LW; Rosen BP
    J Bacteriol; 1977 Feb; 129(2):959-66. PubMed ID: 190212
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Energy coupling in the active transport of amino acids by bacteriohodopsin-containing cells of Halobacterium holobium.
    Hubbard JS; Rinehart CA; Baker RA
    J Bacteriol; 1976 Jan; 125(1):181-90. PubMed ID: 128552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.