These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 1309810)
1. Reducing inositol lipid hydrolysis, Ins(1,4,5)P3 receptor availability, or Ca2+ gradients lengthens the duration of the cell cycle in Xenopus laevis blastomeres. Han JK; Fukami K; Nuccitelli R J Cell Biol; 1992 Jan; 116(1):147-56. PubMed ID: 1309810 [TBL] [Abstract][Full Text] [Related]
2. Reducing PIP2 hydrolysis, Ins(1,4,5)P3 receptor availability, or calcium gradients inhibits progesterone-stimulated Xenopus oocyte maturation. Han JK; Lee SK Biochem Biophys Res Commun; 1995 Dec; 217(3):931-9. PubMed ID: 8554618 [TBL] [Abstract][Full Text] [Related]
3. The sperm-induced Ca2+ wave following fertilization of the Xenopus egg requires the production of Ins(1, 4, 5)P3. Nuccitelli R; Yim DL; Smart T Dev Biol; 1993 Jul; 158(1):200-12. PubMed ID: 7687224 [TBL] [Abstract][Full Text] [Related]
4. Fertilization stimulates an increase in inositol trisphosphate and inositol lipid levels in Xenopus eggs. Snow P; Yim DL; Leibow JD; Saini S; Nuccitelli R Dev Biol; 1996 Nov; 180(1):108-18. PubMed ID: 8948578 [TBL] [Abstract][Full Text] [Related]
5. Oscillation of inositol polyphosphates in the embryonic cleavage cycle of the Xenopus laevis. Han JK Biochem Biophys Res Commun; 1995 Jan; 206(2):775-80. PubMed ID: 7826399 [TBL] [Abstract][Full Text] [Related]
6. Partial purification and reconstitution of inositol 1,4,5-trisphosphate receptor/Ca2+ channel of bovine liver microsomes. Kamata H; Hirata M; Ozaki S; Kusaka I; Kagawa Y; Hirata H J Biochem; 1992 Apr; 111(4):546-52. PubMed ID: 1319993 [TBL] [Abstract][Full Text] [Related]
7. Luminal Ca2+ controls the activation of the inositol 1,4,5-trisphosphate receptor by cytosolic Ca2+. Missiaen L; De Smedt H; Droogmans G; Casteels R J Biol Chem; 1992 Nov; 267(32):22961-6. PubMed ID: 1331072 [TBL] [Abstract][Full Text] [Related]
8. Isolation, characterization, and localization of the inositol 1,4,5-trisphosphate receptor protein in Xenopus laevis oocytes. Parys JB; Sernett SW; DeLisle S; Snyder PM; Welsh MJ; Campbell KP J Biol Chem; 1992 Sep; 267(26):18776-82. PubMed ID: 1326534 [TBL] [Abstract][Full Text] [Related]
9. Involvement of the C-terminus of the inositol 1,4,5-trisphosphate receptor in Ca2+ release analysed using region-specific monoclonal antibodies. Nakade S; Maeda N; Mikoshiba K Biochem J; 1991 Jul; 277 ( Pt 1)(Pt 1):125-31. PubMed ID: 1713032 [TBL] [Abstract][Full Text] [Related]
10. Endothelin-mediated calcium response and inositol 1,4,5-trisphosphate release in neuroblastoma-glioma hybrid cells (NG108-15): cross talk with ATP and bradykinin. Chau LY; Lin TA; Chang WT; Chen CH; Shue MJ; Hsu YS; Hu CY; Tsai WH; Sun GY J Neurochem; 1993 Feb; 60(2):454-60. PubMed ID: 8380432 [TBL] [Abstract][Full Text] [Related]
11. Inositol lipid hydrolysis contributes to the Ca2+ wave in the activating egg of Xenopus laevis. Larabell C; Nuccitelli R Dev Biol; 1992 Oct; 153(2):347-55. PubMed ID: 1327924 [TBL] [Abstract][Full Text] [Related]
12. Histamine-H1-receptor-mediated phosphoinositide hydrolysis, Ca2+ signalling and membrane-potential oscillations in human HeLa carcinoma cells. Tilly BC; Tertoolen LG; Lambrechts AC; Remorie R; de Laat SW; Moolenaar WH Biochem J; 1990 Feb; 266(1):235-43. PubMed ID: 2155607 [TBL] [Abstract][Full Text] [Related]
14. Expression of inositol 1,4,5-trisphosphate receptors changes the Ca2+ signal of Xenopus oocytes. DeLisle S; Blondel O; Longo FJ; Schnabel WE; Bell GI; Welsh MJ Am J Physiol; 1996 Apr; 270(4 Pt 1):C1255-61. PubMed ID: 8928753 [TBL] [Abstract][Full Text] [Related]
15. Platelet-derived growth factor-mediated Ca2+ entry is blocked by antibodies to phosphatidylinositol 4,5-bisphosphate but does not involve heparin-sensitive inositol 1,4,5-trisphosphate receptors. Huang CL; Takenawa T; Ives HE J Biol Chem; 1991 Mar; 266(7):4045-8. PubMed ID: 1847912 [TBL] [Abstract][Full Text] [Related]
16. p110beta and p110delta phosphatidylinositol 3-kinases up-regulate Fc(epsilon)RI-activated Ca2+ influx by enhancing inositol 1,4,5-trisphosphate production. Smith AJ; Surviladze Z; Gaudet EA; Backer JM; Mitchell CA; Wilson BS J Biol Chem; 2001 May; 276(20):17213-20. PubMed ID: 11279065 [TBL] [Abstract][Full Text] [Related]
17. The effects of inositol trisphosphates and inositol tetrakisphosphate on Ca2+ release and Cl- current pattern in the Xenopus laevis oocyte. Ferguson JE; Han JK; Kao JP; Nuccitelli R Exp Cell Res; 1991 Feb; 192(2):352-65. PubMed ID: 1846334 [TBL] [Abstract][Full Text] [Related]
18. Effect of inositol trisphosphate and calcium on oscillating elevations of intracellular calcium in Xenopus oocytes. DeLisle S; Krause KH; Denning G; Potter BV; Welsh MJ J Biol Chem; 1990 Jul; 265(20):11726-30. PubMed ID: 2365695 [TBL] [Abstract][Full Text] [Related]
19. Inositol 1,4,5-trisphosphate-induced calcium release in the organelle layers of the stratified, intact egg of Xenopus laevis. Han JK; Nuccitelli R J Cell Biol; 1990 Apr; 110(4):1103-10. PubMed ID: 2324195 [TBL] [Abstract][Full Text] [Related]
20. Different signaling pathway between sphingosine-1-phosphate and lysophosphatidic acid in Xenopus oocytes: functional coupling of the sphingosine-1-phosphate receptor to PLC-xbeta in Xenopus oocytes. Noh SJ; Kim MJ; Shim S; Han JK J Cell Physiol; 1998 Aug; 176(2):412-23. PubMed ID: 9648929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]