These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
506 related articles for article (PubMed ID: 1309974)
1. Direct interaction between the internal NADH: ubiquinone oxidoreductase and ubiquinol:cytochrome c oxidoreductase in the reduction of exogenous quinones by yeast mitochondria. Beattie DS; Japa S; Howton M; Zhu QS Arch Biochem Biophys; 1992 Feb; 292(2):499-505. PubMed ID: 1309974 [TBL] [Abstract][Full Text] [Related]
2. Direct interaction between yeast NADH-ubiquinone oxidoreductase, succinate-ubiquinone oxidoreductase, and ubiquinol-cytochrome c oxidoreductase in the reduction of exogenous quinones. Zhu QS; Beattie DS J Biol Chem; 1988 Jan; 263(1):193-9. PubMed ID: 2826438 [TBL] [Abstract][Full Text] [Related]
3. The interaction of quinone analogues with wild-type and ubiquinone-deficient yeast mitochondria. Zhu QS; Beattie DS Biochim Biophys Acta; 1988 Jul; 934(3):303-13. PubMed ID: 2840117 [TBL] [Abstract][Full Text] [Related]
4. Reduction of exogenous quinones and 2,6-dichlorophenol indophenol in cytochrome b-deficient yeast mitochondria: a differential effect on center i and center o of the cytochrome b-c1 complex. Zhu QS; Sprague SG; Beattie DS Arch Biochem Biophys; 1988 Sep; 265(2):447-53. PubMed ID: 2844120 [TBL] [Abstract][Full Text] [Related]
5. An inhibitor of mitochondrial respiration which binds to cytochrome b and displaces quinone from the iron-sulfur protein of the cytochrome bc1 complex. von Jagow G; Ljungdahl PO; Graf P; Ohnishi T; Trumpower BL J Biol Chem; 1984 May; 259(10):6318-26. PubMed ID: 6327677 [TBL] [Abstract][Full Text] [Related]
6. Ubiquinol-cytochrome c oxidoreductase. The redox reactions of the bis-heme cytochrome b in ubiquinone-sufficient and ubiquinone-deficient systems. Matsuno-Yagi A; Hatefi Y J Biol Chem; 1996 Mar; 271(11):6164-71. PubMed ID: 8626405 [TBL] [Abstract][Full Text] [Related]
7. Electron transfer through center o of the cytochrome b-c1 complex of yeast mitochondria involves subunit VII, the ubiquinone-binding protein. Japa S; Beattie DS J Biol Chem; 1989 Aug; 264(24):13994-7. PubMed ID: 2547777 [TBL] [Abstract][Full Text] [Related]
8. Effect of substituents of the benzoquinone ring on electron-transfer activities of ubiquinone derivatives. Gu LQ; Yu L; Yu CA Biochim Biophys Acta; 1990 Feb; 1015(3):482-92. PubMed ID: 2154255 [TBL] [Abstract][Full Text] [Related]
9. The effect of ring substituents on the mechanism of interaction of exogenous quinones with the mitochondrial respiratory chain. Chen M; Liu BL; Gu LQ; Zhu QS Biochim Biophys Acta; 1986 Oct; 851(3):469-74. PubMed ID: 3019395 [TBL] [Abstract][Full Text] [Related]
10. Coenzyme Q analogues reconstitute electron transport and proton ejection but not the antimycin-induced "red shift" in mitochondria from coenzyme Q deficient mutants of the yeast Saccharomyces cerevisiae. Beattie DS; Clejan L Biochemistry; 1986 Mar; 25(6):1395-402. PubMed ID: 3008830 [TBL] [Abstract][Full Text] [Related]
11. Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles. Fato R; Estornell E; Di Bernardo S; Pallotti F; Parenti Castelli G; Lenaz G Biochemistry; 1996 Feb; 35(8):2705-16. PubMed ID: 8611577 [TBL] [Abstract][Full Text] [Related]
12. Nuclearly inherited diuron-resistant mutations conferring a deficiency in the NADH--or succinate--ubiquinone oxidoreductase activity in Saccharomyces cerevisiae. Meunier B; Colson-Corbisier AM; Lemesle-Meunier D Eur J Biochem; 1989 Oct; 184(3):651-6. PubMed ID: 2509199 [TBL] [Abstract][Full Text] [Related]
13. Discrete catalytic sites for quinone in the ubiquinol-cytochrome c2 oxidoreductase of Rhodopseudomonas capsulata. Evidence from a mutant defective in ubiquinol oxidation. Robertson DE; Davidson E; Prince RC; van den Berg WH; Marrs BL; Dutton PL J Biol Chem; 1986 Jan; 261(2):584-91. PubMed ID: 3001072 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of electron transfer from ferrocytochrome b to ubiquinone, cytochrome c1 and duroquinone by antimycin. VON Jagow G; Bohrer C Biochim Biophys Acta; 1975 Jun; 387(3):409-24. PubMed ID: 166667 [TBL] [Abstract][Full Text] [Related]
15. Reduction of the Q-pool by duroquinol via the two quinone-binding sites of the QH2: cytochrome c oxidoreductase. A model for the equilibrium between cytochrome b-562 and the Q-pool. Marres CA; de Vries S Biochim Biophys Acta; 1991 Mar; 1057(1):51-63. PubMed ID: 1849003 [TBL] [Abstract][Full Text] [Related]
16. External alternative NADH dehydrogenase of Saccharomyces cerevisiae: a potential source of superoxide. Fang J; Beattie DS Free Radic Biol Med; 2003 Feb; 34(4):478-88. PubMed ID: 12566073 [TBL] [Abstract][Full Text] [Related]
17. Ubiquinol:cytochrome c oxidoreductase (complex III). Effect of inhibitors on cytochrome b reduction in submitochondrial particles and the role of ubiquinone in complex III. Matsuno-Yagi A; Hatefi Y J Biol Chem; 2001 Jun; 276(22):19006-11. PubMed ID: 11262412 [TBL] [Abstract][Full Text] [Related]
18. The nuclear ABC1 gene is essential for the correct conformation and functioning of the cytochrome bc1 complex and the neighbouring complexes II and IV in the mitochondrial respiratory chain. Brasseur G; Tron G; Dujardin G; Slonimski PP; Brivet-Chevillotte P Eur J Biochem; 1997 May; 246(1):103-11. PubMed ID: 9210471 [TBL] [Abstract][Full Text] [Related]
19. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Turrens JF; Alexandre A; Lehninger AL Arch Biochem Biophys; 1985 Mar; 237(2):408-14. PubMed ID: 2983613 [TBL] [Abstract][Full Text] [Related]
20. Role of the evolutionarily conserved cytochrome b tryptophan 142 in the ubiquinol oxidation catalyzed by the bc1 complex in the yeast Saccharomyces cerevisiae. Bruel C; di Rago JP; Slonimski PP; Lemesle-Meunier D J Biol Chem; 1995 Sep; 270(38):22321-8. PubMed ID: 7673215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]