BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 1309974)

  • 1. Direct interaction between the internal NADH: ubiquinone oxidoreductase and ubiquinol:cytochrome c oxidoreductase in the reduction of exogenous quinones by yeast mitochondria.
    Beattie DS; Japa S; Howton M; Zhu QS
    Arch Biochem Biophys; 1992 Feb; 292(2):499-505. PubMed ID: 1309974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct interaction between yeast NADH-ubiquinone oxidoreductase, succinate-ubiquinone oxidoreductase, and ubiquinol-cytochrome c oxidoreductase in the reduction of exogenous quinones.
    Zhu QS; Beattie DS
    J Biol Chem; 1988 Jan; 263(1):193-9. PubMed ID: 2826438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction of quinone analogues with wild-type and ubiquinone-deficient yeast mitochondria.
    Zhu QS; Beattie DS
    Biochim Biophys Acta; 1988 Jul; 934(3):303-13. PubMed ID: 2840117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of exogenous quinones and 2,6-dichlorophenol indophenol in cytochrome b-deficient yeast mitochondria: a differential effect on center i and center o of the cytochrome b-c1 complex.
    Zhu QS; Sprague SG; Beattie DS
    Arch Biochem Biophys; 1988 Sep; 265(2):447-53. PubMed ID: 2844120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An inhibitor of mitochondrial respiration which binds to cytochrome b and displaces quinone from the iron-sulfur protein of the cytochrome bc1 complex.
    von Jagow G; Ljungdahl PO; Graf P; Ohnishi T; Trumpower BL
    J Biol Chem; 1984 May; 259(10):6318-26. PubMed ID: 6327677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ubiquinol-cytochrome c oxidoreductase. The redox reactions of the bis-heme cytochrome b in ubiquinone-sufficient and ubiquinone-deficient systems.
    Matsuno-Yagi A; Hatefi Y
    J Biol Chem; 1996 Mar; 271(11):6164-71. PubMed ID: 8626405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron transfer through center o of the cytochrome b-c1 complex of yeast mitochondria involves subunit VII, the ubiquinone-binding protein.
    Japa S; Beattie DS
    J Biol Chem; 1989 Aug; 264(24):13994-7. PubMed ID: 2547777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of substituents of the benzoquinone ring on electron-transfer activities of ubiquinone derivatives.
    Gu LQ; Yu L; Yu CA
    Biochim Biophys Acta; 1990 Feb; 1015(3):482-92. PubMed ID: 2154255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of ring substituents on the mechanism of interaction of exogenous quinones with the mitochondrial respiratory chain.
    Chen M; Liu BL; Gu LQ; Zhu QS
    Biochim Biophys Acta; 1986 Oct; 851(3):469-74. PubMed ID: 3019395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coenzyme Q analogues reconstitute electron transport and proton ejection but not the antimycin-induced "red shift" in mitochondria from coenzyme Q deficient mutants of the yeast Saccharomyces cerevisiae.
    Beattie DS; Clejan L
    Biochemistry; 1986 Mar; 25(6):1395-402. PubMed ID: 3008830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles.
    Fato R; Estornell E; Di Bernardo S; Pallotti F; Parenti Castelli G; Lenaz G
    Biochemistry; 1996 Feb; 35(8):2705-16. PubMed ID: 8611577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclearly inherited diuron-resistant mutations conferring a deficiency in the NADH--or succinate--ubiquinone oxidoreductase activity in Saccharomyces cerevisiae.
    Meunier B; Colson-Corbisier AM; Lemesle-Meunier D
    Eur J Biochem; 1989 Oct; 184(3):651-6. PubMed ID: 2509199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrete catalytic sites for quinone in the ubiquinol-cytochrome c2 oxidoreductase of Rhodopseudomonas capsulata. Evidence from a mutant defective in ubiquinol oxidation.
    Robertson DE; Davidson E; Prince RC; van den Berg WH; Marrs BL; Dutton PL
    J Biol Chem; 1986 Jan; 261(2):584-91. PubMed ID: 3001072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of electron transfer from ferrocytochrome b to ubiquinone, cytochrome c1 and duroquinone by antimycin.
    VON Jagow G; Bohrer C
    Biochim Biophys Acta; 1975 Jun; 387(3):409-24. PubMed ID: 166667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of the Q-pool by duroquinol via the two quinone-binding sites of the QH2: cytochrome c oxidoreductase. A model for the equilibrium between cytochrome b-562 and the Q-pool.
    Marres CA; de Vries S
    Biochim Biophys Acta; 1991 Mar; 1057(1):51-63. PubMed ID: 1849003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. External alternative NADH dehydrogenase of Saccharomyces cerevisiae: a potential source of superoxide.
    Fang J; Beattie DS
    Free Radic Biol Med; 2003 Feb; 34(4):478-88. PubMed ID: 12566073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ubiquinol:cytochrome c oxidoreductase (complex III). Effect of inhibitors on cytochrome b reduction in submitochondrial particles and the role of ubiquinone in complex III.
    Matsuno-Yagi A; Hatefi Y
    J Biol Chem; 2001 Jun; 276(22):19006-11. PubMed ID: 11262412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nuclear ABC1 gene is essential for the correct conformation and functioning of the cytochrome bc1 complex and the neighbouring complexes II and IV in the mitochondrial respiratory chain.
    Brasseur G; Tron G; Dujardin G; Slonimski PP; Brivet-Chevillotte P
    Eur J Biochem; 1997 May; 246(1):103-11. PubMed ID: 9210471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria.
    Turrens JF; Alexandre A; Lehninger AL
    Arch Biochem Biophys; 1985 Mar; 237(2):408-14. PubMed ID: 2983613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the evolutionarily conserved cytochrome b tryptophan 142 in the ubiquinol oxidation catalyzed by the bc1 complex in the yeast Saccharomyces cerevisiae.
    Bruel C; di Rago JP; Slonimski PP; Lemesle-Meunier D
    J Biol Chem; 1995 Sep; 270(38):22321-8. PubMed ID: 7673215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.