BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

509 related articles for article (PubMed ID: 1309974)

  • 21. Identification of a stable ubisemiquinone and characterization of the effects of ubiquinone oxidation-reduction status on the Rieske iron-sulfur protein in the three-subunit ubiquinol-cytochrome c oxidoreductase complex of Paracoccus denitrificans.
    Meinhardt SW; Yang XH; Trumpower BL; Ohnishi T
    J Biol Chem; 1987 Jun; 262(18):8702-6. PubMed ID: 3036822
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Triphasic reduction of cytochrome b and the protonmotive Q cycle pathway of electron transfer in the cytochrome bc1 complex of the mitochondrial respiratory chain.
    Tang HL; Trumpower BL
    J Biol Chem; 1986 May; 261(14):6209-15. PubMed ID: 3009448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular basis for resistance to antimycin and diuron, Q-cycle inhibitors acting at the Qi site in the mitochondrial ubiquinol-cytochrome c reductase in Saccharomyces cerevisiae.
    di Rago JP; Colson AM
    J Biol Chem; 1988 Sep; 263(25):12564-70. PubMed ID: 2842335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bypasses of the antimycin a block of mitochondrial electron transport in relation to ubisemiquinone function.
    Alexandre A; Lehninger AL
    Biochim Biophys Acta; 1984 Oct; 767(1):120-9. PubMed ID: 6091750
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ubiquinol:cytochrome c oxidoreductase. The redox reactions of the bis-heme cytochrome b in unenergized and energized submitochondrial particles.
    Matsuno-Yagi A; Hatefi Y
    J Biol Chem; 1997 Jul; 272(27):16928-33. PubMed ID: 9202003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c oxidoreductases probed by sensitivity to quinone-related inhibitors.
    Yamashita A; Miyoshi H; Hatano T; Iwamura H
    J Biochem; 1996 Aug; 120(2):377-84. PubMed ID: 8889824
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potential induced redox reactions in mitochondrial and bacterial cytochrome b-c1 complexes.
    Tolkatchev D; Yu L; Yu CA
    J Biol Chem; 1996 May; 271(21):12356-63. PubMed ID: 8647838
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutational analysis of the mitochondrial Rieske iron-sulfur protein of Saccharomyces cerevisiae. II. Biochemical characterization of temperature-sensitive RIP1- mutations.
    Ljungdahl PO; Beckmann JD; Trumpower BL
    J Biol Chem; 1989 Mar; 264(7):3723-31. PubMed ID: 2537289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The reconstitution of L-3-glycerophosphate-cytochrome c oxidoreductase from L-3-glycerophosphate dehydrogenase, ubiquinone-10 and ubiquinol-cytochrome c oxidoreductase.
    Cottingham IR; Ragan CI
    Biochem J; 1980 Oct; 192(1):19-31. PubMed ID: 6272693
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of dibromothymoquinone on the structure and function of the mitochondrial bc1 complex.
    Degli Esposti M; Rotilio G; Lenaz G
    Biochim Biophys Acta; 1984 Oct; 767(1):10-20. PubMed ID: 6091748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple Q-cycle bypass reactions at the Qo site of the cytochrome bc1 complex.
    Muller F; Crofts AR; Kramer DM
    Biochemistry; 2002 Jun; 41(25):7866-74. PubMed ID: 12069575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subunit VII, the ubiquinone-binding protein, of the cytochrome b-c1 complex of yeast mitochondria is involved in electron transport at center o and faces the matrix side of the membrane.
    Japa S; Zhu QS; Beattie DS
    J Biol Chem; 1987 Apr; 262(12):5441-4. PubMed ID: 3032932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidation of NADH by a rotenone and antimycin-sensitive pathway in the mitochondrion of procyclic Trypanosoma brucei brucei.
    Beattie DS; Obungu VH; Kiaira JK
    Mol Biochem Parasitol; 1994 Mar; 64(1):87-94. PubMed ID: 8078526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Triple inhibitor titrations support the functionality of the dimeric character of mitochondrial ubiquinol-cytochrome c oxidoreductase.
    Nieboer P; Berden JA
    Biochim Biophys Acta; 1992 Jul; 1101(1):90-6. PubMed ID: 1321664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coenzyme Q-pool function in glycerol-3-phosphate oxidation in hamster brown adipose tissue mitochondria.
    Rauchová H; Battino M; Fato R; Lenaz G; Drahota Z
    J Bioenerg Biomembr; 1992 Apr; 24(2):235-41. PubMed ID: 1326518
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of the midpoint potential of the [2Fe-2S] Rieske iron sulfur center by Qo occupants in the bc1 complex.
    Shinkarev VP; Kolling DR; Miller TJ; Crofts AR
    Biochemistry; 2002 Dec; 41(48):14372-82. PubMed ID: 12450404
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The oxidation of external NADH by an intermembrane electron transfer in mitochondria from the ubiquinone-deficient mutant E3-24 of Saccharomyces cerevisiae.
    De Santis A; Melandri BA
    Arch Biochem Biophys; 1984 Jul; 232(1):354-65. PubMed ID: 6378098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proton translocation linked to the activity of the bi-trans-membrane electron transport chain.
    Marzulli D; La Piana G; Cafagno L; Fransvea E; Lofrumento NE
    Arch Biochem Biophys; 1995 May; 319(1):36-48. PubMed ID: 7771804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes to the length of the flexible linker region of the Rieske protein impair the interaction of ubiquinol with the cytochrome bc1 complex.
    Nett JH; Hunte C; Trumpower BL
    Eur J Biochem; 2000 Sep; 267(18):5777-82. PubMed ID: 10971589
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The pathway of the quinol/quinone transhydrogenation reaction in ubiquinol: cytochrome-c reductase of Neurospora mitochondria.
    Zweck A; Bechmann G; Weiss H
    Eur J Biochem; 1989 Jul; 183(1):199-203. PubMed ID: 2546772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.