BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 1310038)

  • 1. Mutations Pro----Ala-35 and Tyr----Phe-75 of Rhodobacter capsulatus ferrocytochrome c2 affect protein backbone dynamics: measurements of individual amide proton exchange rate constants by 1H-15N HMQC spectroscopy.
    Gooley PR; Caffrey MS; Cusanovich MA; MacKenzie NE
    Biochemistry; 1992 Jan; 31(2):443-50. PubMed ID: 1310038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of amide proton exchange in reduced and oxidized Rhodobacter capsulatus cytochrome c2: a 1H-15N NMR study.
    Gooley PR; Zhao D; MacKenzie NE
    J Biomol NMR; 1991 Jul; 1(2):145-54. PubMed ID: 1668720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pro----Ala-35 Rhodobacter capsulatus cytochrome c2 shows dynamic not structural differences. A 1H and 15N NMR study.
    Gooley PR; MacKenzie NE
    FEBS Lett; 1990 Jan; 260(2):225-8. PubMed ID: 2153585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability study of Rhodobacter capsulatus ferrocytochrome c2 wild-type and site-directed mutants using hydrogen/deuterium exchange monitored by electrospray ionization mass spectrometry.
    Jaquinod M; Guy P; Halgand F; Caffrey M; Fitch J; Cusanovich M; Forest E
    FEBS Lett; 1996 Feb; 380(1-2):44-8. PubMed ID: 8603744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential 1H and 15N NMR resonance assignment and secondary structure of ferrocytochrome c2 from Rhodobacter sphaeroides.
    Gans P; Simorre JP; Caffrey M; Marion D; Richaud P; Verméglio A
    J Biochem; 1996 Jun; 119(6):1131-42. PubMed ID: 8827449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The substitution of proline 35 by alanine in Rhodobacter capsulatus cytochrome c2 affects the overall protein stability but not the alkaline transition.
    Caffrey MS; Gooley PR; Zhao D; Meyer TE; Cusanovich MA; MacKenzie NE
    Protein Eng; 1997 Jan; 10(1):77-80. PubMed ID: 9051737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-related conformational changes in Rhodobacter capsulatus cytochrome c2.
    Zhao D; Hutton HM; Gooley PR; MacKenzie NE; Cusanovich MA
    Protein Sci; 2000 Sep; 9(9):1828-37. PubMed ID: 11045628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assignment of the 1H and 15N NMR spectra of Rhodobacter capsulatus ferrocytochrome c2.
    Gooley PR; Caffrey MS; Cusanovich MA; MacKenzie NE
    Biochemistry; 1990 Mar; 29(9):2278-90. PubMed ID: 2159796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of conserved amino acids on the structure and environment of the heme of cytochrome c2. A resonance Raman study.
    Othman S; Fitch J; Cusanovich MA; Desbois A
    Biochemistry; 1997 May; 36(18):5499-508. PubMed ID: 9154933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochrome c2 mutants of Rhodobacter capsulatus.
    Caffrey M; Davidson E; Cusanovich M; Daldal F
    Arch Biochem Biophys; 1992 Feb; 292(2):419-26. PubMed ID: 1309972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An optimized g-tensor for Rhodobacter capsulatus cytochrome c2 in solution: a structural comparison of the reduced and oxidized states.
    Zhao D; Hutton HM; Cusanovich MA; MacKenzie NE
    Protein Sci; 1996 Sep; 5(9):1816-25. PubMed ID: 8880905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spectroscopic analysis of the Pro35----Ala mutant of Rhodobacter capsulatus cytochrome c2. The strictly conserved Pro35 is not structurally essential.
    Gooley PR; Caffrey MS; Cusanovich MA; Mackenzie NE
    Eur J Biochem; 1991 Mar; 196(3):653-61. PubMed ID: 1849479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Main chain and side chain dynamics of a heme protein: 15N and 2H NMR relaxation studies of R. capsulatus ferrocytochrome c2.
    Flynn PF; Bieber Urbauer RJ; Zhang H; Lee AL; Wand AJ
    Biochemistry; 2001 Jun; 40(22):6559-69. PubMed ID: 11380250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of a conserved hydrogen-bonding network in cytochromes c to their redox potentials and stabilities.
    Caffrey MS; Daldal F; Holden HM; Cusanovich MA
    Biochemistry; 1991 Apr; 30(17):4119-25. PubMed ID: 1850617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and stability effects of the mutation of glycine 34 to serine in Rhodobacter capsulatus cytochrome c(2).
    Zhao D; Hutton HM; Meyer TE; Walker FA; MacKenzie NE; Cusanovich MA
    Biochemistry; 2000 Apr; 39(14):4053-61. PubMed ID: 10747794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome c2 is essential for electron transfer to nitrous oxide reductase from physiological substrates in Rhodobacter capsulatus and can act as an electron donor to the reductase in vitro. Correlation with photoinhibition studies.
    Richardson DJ; Bell LC; McEwan AG; Jackson JB; Ferguson SJ
    Eur J Biochem; 1991 Aug; 199(3):677-83. PubMed ID: 1651241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local stability of Rhodobacter capsulatus cytochrome c2 probed by solution phase hydrogen/deuterium exchange and mass spectrometry.
    Cheng G; Wysocki VH; Cusanovich MA
    J Am Soc Mass Spectrom; 2006 Nov; 17(11):1518-25. PubMed ID: 16872833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen exchange in Pseudomonas cytochrome c-551.
    Timkovich R; Walker LA; Cai M
    Biochim Biophys Acta; 1992 May; 1121(1-2):8-15. PubMed ID: 1318080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein dynamics: imidazole and 2-mercaptoethanol binding to the Rhodobacter capsulatus cytochrome c(2) mutant, glycine 95 proline.
    Dumortier C; Fitch J; Meyer TE; Cusanovich MA
    Arch Biochem Biophys; 2002 Sep; 405(2):154-62. PubMed ID: 12220527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 15N and 1H NMR studies of Rhodospirillum rubrum cytochrome c2.
    Yu LP; Smith GM
    Biochemistry; 1988 Mar; 27(6):1949-56. PubMed ID: 2837275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.