BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 1310693)

  • 1. Isoprenoid metabolism is required for stimulation of the respiratory burst oxidase of HL-60 cells.
    Bokoch GM; Prossnitz V
    J Clin Invest; 1992 Feb; 89(2):402-8. PubMed ID: 1310693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the mevalonate pathway of isoprenoid synthesis in IL-8 generation by activated monocytic cells.
    Terkeltaub R; Solan J; Barry M; Santoro D; Bokoch GM
    J Leukoc Biol; 1994 Jun; 55(6):749-55. PubMed ID: 8195701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential expression of cytosolic activation factors for NADPH oxidase in HL-60 leukemic cells.
    Seifert R; Jungblut P; Schultz G
    Biochem Biophys Res Commun; 1989 Jun; 161(3):1109-17. PubMed ID: 2472788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of NADPH-oxidase activity in human polymorphonuclear neutrophils by lipophilic ascorbic acid derivatives.
    Schmid E; Figala V; Ullrich V
    Mol Pharmacol; 1994 May; 45(5):815-25. PubMed ID: 8190099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of isoprenylation in intracellular pH regulation of granulocytes.
    Arellano R; Grinstein S
    FEBS Lett; 1993 Oct; 332(3):247-50. PubMed ID: 8405466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of the human neutrophil nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase by protein kinase C.
    Cox JA; Jeng AY; Sharkey NA; Blumberg PM; Tauber AI
    J Clin Invest; 1985 Nov; 76(5):1932-8. PubMed ID: 2997297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of the respiratory burst in HL-60 cells. Correlation of function and protein expression.
    Levy R; Rotrosen D; Nagauker O; Leto TL; Malech HL
    J Immunol; 1990 Oct; 145(8):2595-601. PubMed ID: 2170520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The arachidonic acid-binding protein S100A8/A9 promotes NADPH oxidase activation by interaction with p67phox and Rac-2.
    Kerkhoff C; Nacken W; Benedyk M; Dagher MC; Sopalla C; Doussiere J
    FASEB J; 2005 Mar; 19(3):467-9. PubMed ID: 15642721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac 2.
    Knaus UG; Heyworth PG; Evans T; Curnutte JT; Bokoch GM
    Science; 1991 Dec; 254(5037):1512-5. PubMed ID: 1660188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-free activation of phagocyte NADPH-oxidase: tissue and differentiation-specific expression of cytosolic cofactor activity.
    Parkinson JF; Akard LP; Schell MJ; Gabig TG
    Biochem Biophys Res Commun; 1987 Jun; 145(3):1198-204. PubMed ID: 3038092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel post-translational incorporation of tyrosine into multiple proteins in activated human neutrophils. Correlation with phagocytosis and activation of the NADPH oxidase-mediated respiratory burst.
    Nath J; Ohno Y; Gallin JI; Wright DG
    J Immunol; 1992 Nov; 149(10):3360-71. PubMed ID: 1331234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of neutrophil superoxide generation by hypericin, an antiretroviral agent.
    Nishiuchi T; Utsumi T; Kanno T; Takehara Y; Kobuchi H; Yoshioka T; Horton AA; Yasuda T; Utsumi K
    Arch Biochem Biophys; 1995 Nov; 323(2):335-42. PubMed ID: 7487096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective inhibition of isoprenylation of 21-26-kDa proteins by the anticarcinogen d-limonene and its metabolites.
    Crowell PL; Chang RR; Ren ZB; Elson CE; Gould MN
    J Biol Chem; 1991 Sep; 266(26):17679-85. PubMed ID: 1894647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of cytochrome b-245 translocation in the PMA stimulation of the human neutrophil NADPH-oxidase.
    Higson FK; Durbin L; Pavlotsky N; Tauber AI
    J Immunol; 1985 Jul; 135(1):519-24. PubMed ID: 2987348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of isoprenoid biosynthesis induces apoptosis in human promyelocytic HL-60 cells.
    Pérez-Sala D; Mollinedo F
    Biochem Biophys Res Commun; 1994 Mar; 199(3):1209-15. PubMed ID: 8147861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryptic O2- -generating NADPH oxidase in dendritic cells.
    Elsen S; Doussière J; Villiers CL; Faure M; Berthier R; Papaioannou A; Grandvaux N; Marche PN; Vignais PV
    J Cell Sci; 2004 May; 117(Pt 11):2215-26. PubMed ID: 15126623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of isoprenoid metabolism in IgE receptor-mediated signal transduction.
    Deanin GG; Cutts JL; Pfeiffer JR; Oliver JM
    J Immunol; 1991 May; 146(10):3528-35. PubMed ID: 1827487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in radiosensitivity of the respiratory burst generated in HL-60 cells via different signal transduction pathways.
    Kaffenberger W; van Beuningen D
    Int J Radiat Biol; 1994 Dec; 66(6):767-74. PubMed ID: 7814975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of subcellular activation of the human neutrophil NADPH-oxidase by arachidonic acid, sodium dodecyl sulfate (SDS), and phorbol myristate acetate (PMA).
    Cox JA; Jeng AY; Blumberg PM; Tauber AI
    J Immunol; 1987 Mar; 138(6):1884-8. PubMed ID: 3102604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interferon-gamma enhances superoxide production by HL-60 cells stimulated with multiple agonists.
    Klein JB; Scherzer JA; McLeish KR
    J Interferon Res; 1991 Apr; 11(2):69-74. PubMed ID: 1651364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.