These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 1311432)

  • 1. Trophic regulation of acetylcholinesterase isoenzymes in adult mammalian skeletal muscles.
    Fernandez HL; Hodges-Savola CA
    Neurochem Res; 1992 Jan; 17(1):115-24. PubMed ID: 1311432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A role for acetylcholine-nicotinic receptor interactions in the selective increase of rat skeletal muscle G4 acetylcholinesterase following short-term denervation.
    Hodges-Savola CA; Fernandez HL
    J Neurochem; 1991 Apr; 56(4):1423-31. PubMed ID: 2002351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurogenic calcitonin gene-related peptide: a neurotrophic factor in the maintenance of acetylcholinesterase molecular forms in adult skeletal muscles.
    Fernandez HL; Ross GS; Nadelhaft I
    Brain Res; 1999 Oct; 844(1-2):83-97. PubMed ID: 10536264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective increase of tetrameric (G4) acetylcholinesterase activity in rat hindlimb skeletal muscle following short-term denervation.
    Gregory EJ; Hodges-Savola CA; Fernandez HL
    J Neurochem; 1989 Nov; 53(5):1411-8. PubMed ID: 2795009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurotrophic control of 16S acetylcholinesterase from mammalian skeletal muscle in organ culture.
    Fernandez HL; Patterson MR; Duell MJ
    J Neurobiol; 1980 Nov; 11(6):557-70. PubMed ID: 7441241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological regulation of G4 AChe in fast-twitch muscle: effects of exercise and CGRP.
    Fernandez HL; Hodges-Savola CA
    J Appl Physiol (1985); 1996 Jan; 80(1):357-62. PubMed ID: 8847328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Denervation induced changes in subcellular pools of 16S acetylcholinesterase activity from adult mammalian skeletal muscle.
    Fernandez HL; Stiles JR
    Neurosci Lett; 1984 Feb; 44(2):187-92. PubMed ID: 6709233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular acetylcholinesterase of adult rat myofibers is more concentrated in endplate than non-endplate regions.
    Donoso JA; Stiles JR; Fernandez HL
    J Neurosci Res; 1987; 17(2):146-53. PubMed ID: 3586068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in acetylcholinesterase in experimental autoimmune myasthenia gravis and in response to treatment with a specific antisense.
    Blotnick E; Hamra-Amitai Y; Wald C; Brenner T; Anglister L
    Eur J Neurosci; 2012 Oct; 36(8):3077-85. PubMed ID: 22805122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcellular distribution of acetylcholinesterase asymmetric forms during postnatal development of mammalian skeletal muscle.
    Fernandez HL; Seiter TC
    FEBS Lett; 1984 May; 170(1):147-51. PubMed ID: 6723959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skeletal muscle acetylcholinesterase molecular forms in amyotrophic lateral sclerosis.
    Fernandez HL; Stiles JR; Donoso JA
    Muscle Nerve; 1986 Jun; 9(5):399-406. PubMed ID: 3724786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of neuromuscular junctions in adult rats: accumulation of acetylcholine receptors, acetylcholinesterase, and components of synaptic basal lamina.
    Weinberg CB; Sanes JR; Hall ZW
    Dev Biol; 1981 Jun; 84(2):255-66. PubMed ID: 20737863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role for calcitonin gene-related peptide in the regulation of rat skeletal muscle G4 acetylcholinesterase.
    Hodges-Savola CA; Fernandez HL
    Neurosci Lett; 1995 May; 190(2):117-20. PubMed ID: 7644118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylcholinesterase histochemistry in the non-endplate region of skeletal muscles and effect of denervation.
    Nakano S; Akiguchi I; Yasuda Y; Nakamura S; Kameyama M; Kimura J
    Muscle Nerve; 1990 Aug; 13(8):687-96. PubMed ID: 2166910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Appearance of new acetylcholine receptors on the baby chick biventer cervicis and denervated rat diaphragm muscles after blockade with alpha-bungarotoxin.
    Chiung Chang C; Jai Su M; Hsien Tung L
    J Physiol; 1977 Jun; 268(2):449-65. PubMed ID: 874917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylcholine receptor availability and transmission efficacy.
    Rochel S; Robbins N
    Brain Res; 1987 Dec; 435(1-2):41-7. PubMed ID: 2827857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetylcholinesterase activity of skeletal muscle in a non-immunogenic model for myasthenia gravis in rats.
    Van Kempen GT; Trip SA; Molenaar PC
    J Neural Transm (Vienna); 1999; 106(5-6):423-31. PubMed ID: 10443548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exercise effects on recovery of muscle acetylcholinesterase from reduced neuromuscular activity.
    Gardiner PF; Lapointe M; Gravel D
    Muscle Nerve; 1982; 5(5):363-8. PubMed ID: 6289098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nerve regulation of class I and class II-asymmetric forms of acetylcholinesterase in rat skeletal muscles.
    Fadić R; Inestrosa NC
    J Neurosci Res; 1989 Apr; 22(4):449-55. PubMed ID: 2760943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Butyrylcholinesterase and the control of synaptic responses in acetylcholinesterase knockout mice.
    Girard E; Bernard V; Minic J; Chatonnet A; Krejci E; Molgó J
    Life Sci; 2007 May; 80(24-25):2380-5. PubMed ID: 17467011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.