These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 1311543)
41. Pristine soils mineralize 3-chlorobenzoate and 2,4-dichlorophenoxyacetate via different microbial populations. Fulthorpe RR; Rhodes AN; Tiedje JM Appl Environ Microbiol; 1996 Apr; 62(4):1159-66. PubMed ID: 8919776 [TBL] [Abstract][Full Text] [Related]
42. Analysis of the 2,4-dichlorophenoxyacetic acid-degradative plasmid pEST4011 of Achromobacter xylosoxidans subsp. denitrificans strain EST4002. Vedler E; Kõiv V; Heinaru A Gene; 2000 Sep; 255(2):281-8. PubMed ID: 11024288 [TBL] [Abstract][Full Text] [Related]
43. Influence of chlorobenzoates on the utilisation of chlorobiphenyls and chlorobenzoate mixtures by chlorobiphenyl/chlorobenzoate-mineralising hybrid bacterial strains. Stratford J; Wright MA; Reineke W; Mokross H; Havel J; Knowles CJ; Robinson GK Arch Microbiol; 1996 Mar; 165(3):213-8. PubMed ID: 8599540 [TBL] [Abstract][Full Text] [Related]
44. The copy number of the catabolic plasmid pJP4 affects growth of Ralstonia eutropha JMP134 (pJP4) on 3-chlorobenzoate. Trefault N; Clément P; Manzano M; Pieper DH; González B FEMS Microbiol Lett; 2002 Jun; 212(1):95-100. PubMed ID: 12076793 [TBL] [Abstract][Full Text] [Related]
45. Isolation of Alcaligenes sp. strain L6 at low oxygen concentrations and degradation of 3-chlorobenzoate via a pathway not involving (chloro)catechols. Krooneman J; Wieringa EB; Moore ER; Gerritse J; Prins RA; Gottschal JC Appl Environ Microbiol; 1996 Jul; 62(7):2427-34. PubMed ID: 8779583 [TBL] [Abstract][Full Text] [Related]
46. Community shifts in a seeded 3-chlorobenzoate degrading membrane biofilm reactor: indications for involvement of in situ horizontal transfer of the clc-element from inoculum to contaminant bacteria. Springael D; Peys K; Ryngaert A; Van Roy S; Hooyberghs L; Ravatn R; Heyndrickx M; van der Meer JR; Vandecasteele C; Mergeay M; Diels L Environ Microbiol; 2002 Feb; 4(2):70-80. PubMed ID: 11972616 [TBL] [Abstract][Full Text] [Related]
47. Widespread occurrence of the tfd-II genes in soil bacteria revealed by nucleotide sequence analysis of 2,4-dichlorophenoxyacetic acid degradative plasmids pDB1 and p712. Kim DU; Kim MS; Lim JS; Ka JO Plasmid; 2013 May; 69(3):243-8. PubMed ID: 23376020 [TBL] [Abstract][Full Text] [Related]
48. Gene transfer of Alcaligenes eutrophus JMP134 plasmid pJP4 to indigenous soil recipients. DiGiovanni GD; Neilson JW; Pepper IL; Sinclair NA Appl Environ Microbiol; 1996 Jul; 62(7):2521-6. PubMed ID: 8779592 [TBL] [Abstract][Full Text] [Related]
49. Degradation of isomeric monochlorobenzoates and 2,4-dichlorophenoxyacetic acid by a constructed Pseudomonas sp. Sahasrabudhe AV; Modi VV Appl Microbiol Biotechnol; 1991 Jan; 34(4):556-7. PubMed ID: 1367232 [TBL] [Abstract][Full Text] [Related]
50. Transfer and expression of the herbicide-degrading plasmid pJP4 in aerobic autotrophic bacteria. Friedrich B; Meyer M; Schlegel HG Arch Microbiol; 1983 Feb; 134(2):92-7. PubMed ID: 6223610 [TBL] [Abstract][Full Text] [Related]
51. Use of a novel plasmid to monitor the fate of a genetically engineered Pseudomonas putida strain. Genthner FJ; Campbell RP; Pritchard PH Mol Ecol; 1992 Oct; 1(3):137-43. PubMed ID: 1344990 [TBL] [Abstract][Full Text] [Related]
52. Functional establishment of introduced chlorobenzoate degraders following bioaugmentation with newly activated soil. Enhanced contaminant remediation via activated soil bioaugmentation. Gentry TJ; Josephson KL; Pepper IL Biodegradation; 2004 Feb; 15(1):67-75. PubMed ID: 14971859 [TBL] [Abstract][Full Text] [Related]
53. A novel bacterium that utilizes monochlorobiphenyls and 4-chlorobenzoate as growth substrates. Kim S; Picardal FW FEMS Microbiol Lett; 2000 Apr; 185(2):225-9. PubMed ID: 10754252 [TBL] [Abstract][Full Text] [Related]
54. Diversity of biphenyl degraders in a chlorobenzene polluted aquifer. Abraham WR; Wenderoth DF; Glässer W Chemosphere; 2005 Jan; 58(4):529-33. PubMed ID: 15620745 [TBL] [Abstract][Full Text] [Related]
55. Characterization of chlorobenzoate degraders isolated from polychlorinated biphenyl-contaminated soil and sediment in the Czech Republic. Pavlû L; Vosáhlová J; Klierová H; Prouza M; Demnerová K; Brenner V J Appl Microbiol; 1999 Sep; 87(3):381-6. PubMed ID: 10540240 [TBL] [Abstract][Full Text] [Related]
56. Genes specifying degradation of 3-chlorobenzoic acid in plasmids pAC27 and pJP4. Ghosal D; You IS; Chatterjee DK; Chakrabarty AM Proc Natl Acad Sci U S A; 1985 Mar; 82(6):1638-42. PubMed ID: 3856842 [TBL] [Abstract][Full Text] [Related]
57. Isolation and characterization of IS1409, an insertion element of 4-chlorobenzoate-degrading Arthrobacter sp. strain TM1, and development of a system for transposon mutagenesis. Gartemann KH; Eichenlaub R J Bacteriol; 2001 Jun; 183(12):3729-36. PubMed ID: 11371537 [TBL] [Abstract][Full Text] [Related]
58. Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Nielsen AT; Tolker-Nielsen T; Barken KB; Molin S Environ Microbiol; 2000 Feb; 2(1):59-68. PubMed ID: 11243263 [TBL] [Abstract][Full Text] [Related]
59. Rational redesign of the 4-chlorobenzoate binding site of 4-chlorobenzoate: coenzyme a ligase for expanded substrate range. Wu R; Reger AS; Cao J; Gulick AM; Dunaway-Mariano D Biochemistry; 2007 Dec; 46(50):14487-99. PubMed ID: 18027984 [TBL] [Abstract][Full Text] [Related]
60. Chlorobenzoate-degrading bacteria in similar pristine soils exhibit different community structures and population dynamics in response to anthropogenic 2-, 3-, and 4-chlorobenzoate levels. Gentry TJ; Wang G; Rensing C; Pepper IL Microb Ecol; 2004 Jul; 48(1):90-102. PubMed ID: 15085300 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]