These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 1311543)
61. Efficiency of chlorocatechol metabolism in natural and constructed chlorobenzoate and chlorobiphenyl degraders. Brenner V; Rucká L; Totevová S; Tømeraas K; Demnerová K J Appl Microbiol; 2004; 96(3):430-6. PubMed ID: 14962122 [TBL] [Abstract][Full Text] [Related]
62. Molecular characterization of a deletion/duplication rearrangement in tfd genes from Ralstonia eutropha JMP134(pJP4) that improves growth on 3-chlorobenzoic acid but abolishes growth on 2,4-dichlorophenoxyacetic acid. Clément P; Pieper DH; González B Microbiology (Reading); 2001 Aug; 147(Pt 8):2141-2148. PubMed ID: 11495991 [TBL] [Abstract][Full Text] [Related]
63. Molecular cloning and expression of the 3-chlorobenzoate-degrading genes from Pseudomonas sp. strain B13. Weisshaar MP; Franklin FC; Reineke W J Bacteriol; 1987 Jan; 169(1):394-402. PubMed ID: 3025183 [TBL] [Abstract][Full Text] [Related]
64. Formation of chlorocatechol meta cleavage products by a pseudomonad during metabolism of monochlorobiphenyls. Arensdorf JJ; Focht DD Appl Environ Microbiol; 1994 Aug; 60(8):2884-9. PubMed ID: 7521996 [TBL] [Abstract][Full Text] [Related]
65. Change in bacterial community during biodegradation of aniline. Tani K; Masuhara M; Welikala N; Yamaguchi N; Nasu M J Appl Microbiol; 1998 May; 84(5):859-64. PubMed ID: 9729107 [TBL] [Abstract][Full Text] [Related]
66. Degradation Mechanism of 4-Chlorobiphenyl by Consortium of Pseudomonas sp. Strain CB-3 and Comamonas sp. Strain CD-2. Xing Z; Hu T; Xiang Y; Qi P; Huang X Curr Microbiol; 2020 Jan; 77(1):15-23. PubMed ID: 31650227 [TBL] [Abstract][Full Text] [Related]
68. Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria. Kamagata Y; Fulthorpe RR; Tamura K; Takami H; Forney LJ; Tiedje JM Appl Environ Microbiol; 1997 Jun; 63(6):2266-72. PubMed ID: 9172346 [TBL] [Abstract][Full Text] [Related]
69. Isolation and preliminary characterization of a 3-chlorobenzoate degrading bacteria. Qi Y; Zhao L; Olusheyi OZ; Tan X J Environ Sci (China); 2007; 19(3):332-7. PubMed ID: 17918596 [TBL] [Abstract][Full Text] [Related]
70. The role of cell bioaugmentation and gene bioaugmentation in the remediation of co-contaminated soils. Pepper IL; Gentry TJ; Newby DT; Roane TM; Josephson KL Environ Health Perspect; 2002 Dec; 110 Suppl 6(Suppl 6):943-6. PubMed ID: 12634123 [TBL] [Abstract][Full Text] [Related]
71. Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-, 4-bromo-, and 4-iodobenzoate by Alcaligenes denitrificans NTB-1. van den Tweel WJ; Kok JB; de Bont JA Appl Environ Microbiol; 1987 Apr; 53(4):810-5. PubMed ID: 3579283 [TBL] [Abstract][Full Text] [Related]
72. The completely sequenced plasmid pEST4011 contains a novel IncP1 backbone and a catabolic transposon harboring tfd genes for 2,4-dichlorophenoxyacetic acid degradation. Vedler E; Vahter M; Heinaru A J Bacteriol; 2004 Nov; 186(21):7161-74. PubMed ID: 15489427 [TBL] [Abstract][Full Text] [Related]
73. Isolation and characterization of a new plasmid from a Flavobacterium sp. which carries the genes for degradation of 2,4-dichlorophenoxyacetate. Chaudhry GR; Huang GH J Bacteriol; 1988 Sep; 170(9):3897-902. PubMed ID: 2842290 [TBL] [Abstract][Full Text] [Related]
74. Occurrence of Tn4371-related mobile elements and sequences in (chloro)biphenyl-degrading bacteria. Springael D; Ryngaert A; Merlin C; Toussaint A; Mergeay M Appl Environ Microbiol; 2001 Jan; 67(1):42-50. PubMed ID: 11133426 [TBL] [Abstract][Full Text] [Related]
75. Integration and excision of a 2,4-dichlorophenoxyacetic acid-degradative plasmid in Alcaligenes paradoxus and evidence of its natural intergeneric transfer. Ka JO; Tiedje JM J Bacteriol; 1994 Sep; 176(17):5284-9. PubMed ID: 8071203 [TBL] [Abstract][Full Text] [Related]
76. Probing the functional diversity of global pristine soil communities with 3-chlorobenzoate reveals that communities of generalists dominate catabolic transformation. Rhodes AN; Fulthorpe RR; Tiedje JM Appl Environ Microbiol; 2013 Nov; 79(22):6932-40. PubMed ID: 23995940 [TBL] [Abstract][Full Text] [Related]
77. Introduction of anaerobic dechlorinating bacteria into soil slurry microcosms and nested-PCR monitoring. el Fantroussi S; Mahillon J; Naveau H; Agathos SN Appl Environ Microbiol; 1997 Feb; 63(2):806-11. PubMed ID: 9023963 [TBL] [Abstract][Full Text] [Related]
78. The chlorobenzoate dioxygenase genes of Burkholderia sp. strain NK8 involved in the catabolism of chlorobenzoates. Francisco P; Ogawa N; Suzuki K; Miyashita K Microbiology (Reading); 2001 Jan; 147(Pt 1):121-33. PubMed ID: 11160806 [TBL] [Abstract][Full Text] [Related]