These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 1311759)
21. [Effect of fibrin on osseointegration of bioactive glass-ceramic materials--experimental study]. Urban K; Povýsil C; Spelda S Acta Chir Orthop Traumatol Cech; 2001; 68(3):168-75. PubMed ID: 11706539 [TBL] [Abstract][Full Text] [Related]
22. Reconstruction of surgical skull defects with hydroxylapatite ceramic buttons and granules. Yamashima T Acta Neurochir (Wien); 1988; 90(3-4):157-62. PubMed ID: 2833072 [TBL] [Abstract][Full Text] [Related]
23. A new osteoconductive resorbable hydroxylapatite graft material that restores bony defects with viable bone. Wagner JR Todays FDA; 1990 Oct; 2(10):4C-5C. PubMed ID: 1963070 [TBL] [Abstract][Full Text] [Related]
24. Comparisons between Bio-Oss(®) and Straumann(®) Bone Ceramic in immediate and staged implant placement in dogs mandible bone defects. Antunes AA; Oliveira Neto P; de Santis E; Caneva M; Botticelli D; Salata LA Clin Oral Implants Res; 2013 Feb; 24(2):135-42. PubMed ID: 22168758 [TBL] [Abstract][Full Text] [Related]
25. Clinical and histological case study using resorbable hydroxylapatite for the repair of osseous defects prior to endosseous implant surgery. Wagner JR J Oral Implantol; 1989; 15(3):186-92. PubMed ID: 2561761 [TBL] [Abstract][Full Text] [Related]
26. A comparative study of anorganic xenogenic bone and autogenous bone implants for bone regeneration in rabbits. Young C; Sandstedt P; Skoglund A Int J Oral Maxillofac Implants; 1999; 14(1):72-6. PubMed ID: 10074755 [TBL] [Abstract][Full Text] [Related]
27. Bone repair is influenced by different particle sizes of anorganic bovine bone matrix: a histologic and radiographic study in vivo. Klüppel LE; Antonini F; Olate S; Nascimento FF; Albergaria-Barbosa JR; Mazzonetto R J Craniofac Surg; 2013 Jul; 24(4):1074-7. PubMed ID: 23851743 [TBL] [Abstract][Full Text] [Related]
28. Regeneration of rabbit calvarial defects using biphasic calcium phosphate and a strontium hydroxyapatite-containing collagen membrane. Kitayama S; Wong LO; Ma L; Hao J; Kasugai S; Lang NP; Mattheos N Clin Oral Implants Res; 2016 Dec; 27(12):e206-e214. PubMed ID: 25916272 [TBL] [Abstract][Full Text] [Related]
29. Closure of palatal defects without a surgical flap: an experimental study in rabbits. Al Ruhaimi KA J Oral Maxillofac Surg; 2001 Nov; 59(11):1319-25. PubMed ID: 11688036 [TBL] [Abstract][Full Text] [Related]
30. Reconstruction of calvarial defects with anorganic bovine bone mineral (Bio-Oss) in a rabbit model. Thaller SR; Hoyt J; Borjeson K; Dart A; Tesluk H J Craniofac Surg; 1993 Apr; 4(2):79-84. PubMed ID: 8324087 [TBL] [Abstract][Full Text] [Related]
31. Reconstruction of calvarial defects by bioresorbable ceramics: an experimental study in rats. Schliephake H; Redecker K; Kage T Mund Kiefer Gesichtschir; 1997 Mar; 1(2):115-20. PubMed ID: 9384790 [TBL] [Abstract][Full Text] [Related]
32. Regenerative response to membranous and enchondral lyophilized allogeneic bone in rabbit skull defects. Isaksson S; Alberius P; Klinge B; Jönsson J; Hallberg E; Wendel M Scand J Plast Reconstr Surg Hand Surg; 1992; 26(2):147-53. PubMed ID: 1411341 [TBL] [Abstract][Full Text] [Related]
33. Closure of rabbit calvarial critical-sized defects using protective composite allogeneic and alloplastic bone substitutes. Haddad AJ; Peel SA; Clokie CM; Sándor GK J Craniofac Surg; 2006 Sep; 17(5):926-34. PubMed ID: 17003622 [TBL] [Abstract][Full Text] [Related]
34. Preparation of a novel anorganic bovine bone xenograft with enhanced bioactivity and osteoconductivity. Cho JS; Kim HS; Um SH; Rhee SH J Biomed Mater Res B Appl Biomater; 2013 Jul; 101(5):855-69. PubMed ID: 23359483 [TBL] [Abstract][Full Text] [Related]
35. Cranioplasty with hydroxylapatite ceramic plates that can easily be trimmed during surgery. A preliminary report. Yamashima T Acta Neurochir (Wien); 1989; 96(3-4):149-53. PubMed ID: 2540628 [TBL] [Abstract][Full Text] [Related]
36. Bone regeneration in the presence of a synthetic hydroxyapatite/silica oxide-based and a xenogenic hydroxyapatite-based bone substitute material. Kruse A; Jung RE; Nicholls F; Zwahlen RA; Hämmerle CH; Weber FE Clin Oral Implants Res; 2011 May; 22(5):506-11. PubMed ID: 21121956 [TBL] [Abstract][Full Text] [Related]
37. Influence of three alloplastic materials on calvarial bone healing. An experimental evaluation of HTR-polymer, lactomer beads, and a carrier gel. Isaksson S; Alberius P; Klinge B Int J Oral Maxillofac Surg; 1993 Dec; 22(6):375-81. PubMed ID: 8106817 [TBL] [Abstract][Full Text] [Related]
38. Engineered cartilage heals skull defects. Doan L; Kelley C; Luong H; English J; Gomez H; Johnson E; Cody D; Duke PJ Am J Orthod Dentofacial Orthop; 2010 Feb; 137(2):162.e1-9; discussion 162-3. PubMed ID: 20152663 [TBL] [Abstract][Full Text] [Related]
39. A technique for regenerating bone in residual defects at implant sites utilizing an osteotropic material. Callan DP Pract Periodontics Aesthet Dent; 1993 Mar; 5(2):35-41; quiz 42. PubMed ID: 8400222 [TBL] [Abstract][Full Text] [Related]
40. Histologic evaluation of the bone/graft interface after mandibular augmentation with hydroxylapatite/purified fibrillar collagen composite implants. Mehlisch DR; Leider AS; Roberts WE Oral Surg Oral Med Oral Pathol; 1990 Dec; 70(6):685-92. PubMed ID: 2175871 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]