These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 13117910)

  • 1. Fermentation of ribose-C14 by Lactobacillus pentosus.
    BERNSTEIN IA
    J Biol Chem; 1953 Nov; 205(1):309-16. PubMed ID: 13117910
    [No Abstract]   [Full Text] [Related]  

  • 2. Fermentation of 1-C14-d-xylose by Lactobacillus pentosus.
    GEST H; LAMPEN JO
    J Biol Chem; 1952 Feb; 194(2):555-62. PubMed ID: 14927647
    [No Abstract]   [Full Text] [Related]  

  • 3. Formation of ribose phosphate from xylose by extracts of Lactobacillus pentosus.
    LAMPEN JO
    J Biol Chem; 1953 Oct; 204(2):999-1010. PubMed ID: 13117876
    [No Abstract]   [Full Text] [Related]  

  • 4. The anaerobic dissimilation of D-ribose-1-C14, D-xylose-1-C14, D-xylose-2-C14, and D-xylose-5-C14 by Aerobacter aerogenes.
    ALTERMATT HA; SIMPSON FJ; NEISH AC
    Can J Biochem Physiol; 1955 Jul; 33(4):615-21. PubMed ID: 13240533
    [No Abstract]   [Full Text] [Related]  

  • 5. Heterofermentative metabolism of glucose and ribose and utilisation of citrate by the smooth biotype of Lactobacillus amylovorus NCFB 2745.
    Whitley K; Marshall VM
    Antonie Van Leeuwenhoek; 1999 Apr; 75(3):217-23. PubMed ID: 10427410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of ribose-1-C14 by cell-free extracts of yeast.
    GIBBS M; EARL JM; RITCHIE JL
    J Biol Chem; 1955 Nov; 217(1):161-8. PubMed ID: 13271379
    [No Abstract]   [Full Text] [Related]  

  • 7. Observations on the mechanism of fermentation of 1-C14-D-xylose by Lactobacillus pentosus.
    LAMPEN JO; GEST H; SOWDEN JC
    J Bacteriol; 1951 Jan; 61(1):97-8. PubMed ID: 14824083
    [No Abstract]   [Full Text] [Related]  

  • 8. The incorporation of C14-glucose and C14-ribose into mouse liver diphosphopyridine nucleotide.
    SHUSTER L; GOLDIN A
    J Biol Chem; 1958 Feb; 230(2):873-81. PubMed ID: 13525403
    [No Abstract]   [Full Text] [Related]  

  • 9. Evaluation of numerical analysis of random amplified polymorphic DNA (RAPD)-PCR as a method to differentiate Lactobacillus plantarum and Lactobacillus pentosus.
    Van Reenen CA; Dicks LM
    Curr Microbiol; 1996 Apr; 32(4):183-7. PubMed ID: 8867459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volatile organic compounds profile during milk fermentation by Lactobacillus pentosus and correlations between volatiles flavor and carbohydrate metabolism.
    Pan DD; Wu Z; Peng T; Zeng XQ; Li H
    J Dairy Sci; 2014 Feb; 97(2):624-31. PubMed ID: 24359834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of C14-labeling patterns in deoxyribose and ribose in mammalian cells.
    HORECKER BL; DOMAGK G; HIATT HH
    Arch Biochem Biophys; 1958 Dec; 78(2):510-7. PubMed ID: 13618033
    [No Abstract]   [Full Text] [Related]  

  • 12. Biosynthesis of ribose in Escherichia coli grown on C14-labeled glucose.
    BERNSTEIN IA
    J Biol Chem; 1956 Aug; 221(2):873-8. PubMed ID: 13357482
    [No Abstract]   [Full Text] [Related]  

  • 13. Labeling of glucose, ribose, and deoxyribose by 1- and 2-C14-glycine in regenerating rat liver.
    SHREEVE WW
    J Biol Chem; 1959 Feb; 234(2):246-9. PubMed ID: 13630887
    [No Abstract]   [Full Text] [Related]  

  • 14. Biosynthesis of glycolate and related compounds from ribose-1-C14 in tobacco leaves.
    GRIFFITH T; BYERRUM RU
    J Biol Chem; 1959 Apr; 234(4):762-4. PubMed ID: 13654258
    [No Abstract]   [Full Text] [Related]  

  • 15. Evaluation of a single and combined inoculation of a Lactobacillus pentosus starter for processing cv. Arbequina natural green olives.
    Hurtado A; Reguant C; Bordons A; Rozès N
    Food Microbiol; 2010 Sep; 27(6):731-40. PubMed ID: 20630314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive alterations in the fermentative sequence of Lactobacillus casei.
    Naik VR; Nadkarni GB
    Arch Biochem Biophys; 1968 Mar; 123(3):431-7. PubMed ID: 5650312
    [No Abstract]   [Full Text] [Related]  

  • 17. Evaluation of different conditions to enhance the performances of Lactobacillus pentosus OM13 during industrial production of Spanish-style table olives.
    Martorana A; Alfonzo A; Gaglio R; Settanni L; Corona O; La Croce F; Vagnoli P; Caruso T; Moschetti G; Francesca N
    Food Microbiol; 2017 Feb; 61():150-158. PubMed ID: 27697165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pentose fermentation by Lactobacillus plantarum. V. Fermentation of 2-deoxy-D-ribose.
    DOMAGK GF; HORECKER BL
    J Biol Chem; 1958 Aug; 233(2):283-6. PubMed ID: 13563487
    [No Abstract]   [Full Text] [Related]  

  • 19. Late blowing of Cheddar cheese induced by accelerated ripening and ribose and galactose supplementation in presence of a novel obligatory heterofermentative nonstarter Lactobacillus wasatchensis.
    Ortakci F; Broadbent JR; Oberg CJ; McMahon DJ
    J Dairy Sci; 2015 Nov; 98(11):7460-72. PubMed ID: 26298753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofilm formation on Conservolea natural black olives during single and combined inoculation with a functional Lactobacillus pentosus starter culture.
    Grounta A; Doulgeraki AI; Nychas GJ; Panagou EZ
    Food Microbiol; 2016 Jun; 56():35-44. PubMed ID: 26919816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.