These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 13117910)

  • 21. Antibiotic resistance of Lactobacillus pentosus and Leuconostoc pseudomesenteroides isolated from naturally-fermented Aloreña table olives throughout fermentation process.
    Casado Muñoz Mdel C; Benomar N; Lerma LL; Gálvez A; Abriouel H
    Int J Food Microbiol; 2014 Feb; 172():110-8. PubMed ID: 24370969
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inoculated fermentation of green olives with potential probiotic Lactobacillus pentosus and Lactobacillus plantarum starter cultures isolated from industrially fermented olives.
    Blana VA; Grounta A; Tassou CC; Nychas GJ; Panagou EZ
    Food Microbiol; 2014 Apr; 38():208-18. PubMed ID: 24290645
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of lactobacilli isolated from caper berry fermentations.
    Pulido RP; Omar NB; Abriouel H; López RL; Cañamero MM; Guyot JP; Gálvez A
    J Appl Microbiol; 2007 Feb; 102(2):583-90. PubMed ID: 17241365
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth of facultatively heterofermentative lactobacilli on starter cell suspensions.
    Rapposch S; Eliskases-Lechner F; Ginzinger W
    Appl Environ Microbiol; 1999 Dec; 65(12):5597-9. PubMed ID: 10584024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression of genes involved in metabolism of phenolic compounds by Lactobacillus pentosus and its relevance for table-olive fermentations.
    Carrasco JA; Lucena-Padrós H; Brenes M; Ruiz-Barba JL
    Food Microbiol; 2018 Dec; 76():382-389. PubMed ID: 30166164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performance of two potential probiotic Lactobacillus strains from the olive microbiota as starters in the fermentation of heat shocked green olives.
    Argyri AA; Nisiotou AA; Mallouchos A; Panagou EZ; Tassou CC
    Int J Food Microbiol; 2014 Feb; 171():68-76. PubMed ID: 24334091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Studies on the specificity of the fermentation of pentoses by Lactobacillus pentosus.
    LAMPEN JO; PETERJOHN HR
    J Bacteriol; 1951 Sep; 62(3):281-92. PubMed ID: 14888645
    [No Abstract]   [Full Text] [Related]  

  • 28. Studies of ribose metabolism. II. A method for the study of ribose synthesis in vivo.
    HIATT HH
    J Biol Chem; 1957 Dec; 229(2):725-30. PubMed ID: 13502334
    [No Abstract]   [Full Text] [Related]  

  • 29. [Study on malolactic fermentation of wines in Uruguay. V. Study of the metabolism of Lactobacillus plantarum (pentosus and arabinosus) and of Lactobacillus buchneri isolated from wines and their enologic uic use].
    Poittevin de De Cores ; Carrasco A
    Rev Latinoam Microbiol Parasitol (Mex); 1966; 8(1):33-7. PubMed ID: 5317655
    [No Abstract]   [Full Text] [Related]  

  • 30. Probiotic potential of lactobacillus strains isolated from sorghum-based traditional fermented food.
    Rao KP; Chennappa G; Suraj U; Nagaraja H; Raj AP; Sreenivasa MY
    Probiotics Antimicrob Proteins; 2015 Jun; 7(2):146-56. PubMed ID: 25666113
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Permeability of Escherichia coli to ribose and ribose nucleotides.
    EGGLESTON LV; KREBS HA
    Biochem J; 1959 Oct; 73(2):264-70. PubMed ID: 13819539
    [No Abstract]   [Full Text] [Related]  

  • 32. [The "Lactobacillus" genus in the digestive tract of rats. I. Characteristics of homofermentative strains isolated from holo- and gnotoxenic rats].
    Raibaud P; Galpin JV; Ducluzeau R; Mocquot G; Oliver G
    Ann Microbiol (Paris); 1973 Jan; 124(1):83-109. PubMed ID: 4723418
    [No Abstract]   [Full Text] [Related]  

  • 33. Studies of ribose metabolism. VI. An assessment of ribose biosynthesis from hexose by way of the C-6 oxidation pathway.
    HIATT HH; LAREAU J
    J Biol Chem; 1958 Nov; 233(5):1023-4. PubMed ID: 13598724
    [No Abstract]   [Full Text] [Related]  

  • 34. Fermentation of various soluble carbohydrates in rumen micro-organisms.
    Czerkawaki JW; Breckenridge G
    Proc Nutr Soc; 1969 Sep; 28(2):52A-53A. PubMed ID: 5389489
    [No Abstract]   [Full Text] [Related]  

  • 35. Metabolism of d-ribose in diabetes mellitus.
    BIERMAN EL; BAKER EM; PLOUGH IC; HALL WH
    Diabetes; 1959; 8():455-8. PubMed ID: 13800586
    [No Abstract]   [Full Text] [Related]  

  • 36. Conversion of D-xylose to D-xylulose in extracts of Lactobacillus pentosus.
    MITSUHASHI S; LAMPEN JO
    J Biol Chem; 1953 Oct; 204(2):1011-8. PubMed ID: 13117877
    [No Abstract]   [Full Text] [Related]  

  • 37. [ON THE POLYOLS FORMED IN LACTIC FERMENTATION OF GLUCIDES].
    PEYNAUD E; GUIMBERTEAU G
    C R Hebd Seances Acad Sci; 1964 May; 258():4626-8. PubMed ID: 14146827
    [No Abstract]   [Full Text] [Related]  

  • 38. The role of xylulose 5-phosphate in xylose metabolism of Lactobacillus pentosus.
    STUMPF PK; HORECKER BL
    J Biol Chem; 1956 Feb; 218(2):753-68. PubMed ID: 13295228
    [No Abstract]   [Full Text] [Related]  

  • 39. Characterization of robust Lactobacillus plantarum and Lactobacillus pentosus starter cultures for environmentally friendly low-salt cucumber fermentations.
    Anekella K; Pérez-Díaz IM
    J Food Sci; 2020 Oct; 85(10):3487-3497. PubMed ID: 32893884
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of ribose in animal tissues.
    McGEOWN MG; MALPRESS FH
    Nature; 1954 Jan; 173(4396):212-13. PubMed ID: 13132910
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.