These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 13117924)

  • 1. Isoleucine and valine metabolism in Escherichia coli. V. alpha-Ketoisovaleric acid accumulation.
    ADELBERG EA; UMBARGER HE
    J Biol Chem; 1953 Nov; 205(1):475-82. PubMed ID: 13117924
    [No Abstract]   [Full Text] [Related]  

  • 2. Isoleucine and valine metabolism in Escherichia coli. V. Antagonism between isoleucine and valine.
    UMBARGER HE; BROWN B
    J Bacteriol; 1955 Aug; 70(2):241-8. PubMed ID: 13251992
    [No Abstract]   [Full Text] [Related]  

  • 3. alpha-Ketoisovaleric acid, a precursor of pantothenic acid in Escherichia coli.
    MAAS WK; VOGEL HJ
    J Bacteriol; 1953 Apr; 65(4):388-93. PubMed ID: 13069392
    [No Abstract]   [Full Text] [Related]  

  • 4. Isoleucine and valine metabolism of Escherichia coli. II. The accumulation of keto acids.
    UMBARGER HE; MAGASANIK B
    J Biol Chem; 1951 Mar; 189(1):287-92. PubMed ID: 14832240
    [No Abstract]   [Full Text] [Related]  

  • 5. Isoleucine and valine metabolism in Escherichia coli. IX. Utilization of acetolactate and acetohydroxybutyrate.
    UMBARGER HE; BROWN B; EYRING EJ
    J Biol Chem; 1960 May; 235():1425-32. PubMed ID: 13840343
    [No Abstract]   [Full Text] [Related]  

  • 6. Isoleucine and valine metabolism in Escherichia coli. X. The enzymatic formation of acetohydroxybutyrate.
    LEAVITT RI; UMBARGER HE
    J Biol Chem; 1961 Sep; 236():2486-91. PubMed ID: 13759955
    [No Abstract]   [Full Text] [Related]  

  • 7. Biosynthesis of valine and isoleucine. IV. alpha-Hydroxy-beta-keto acid reductoisomerase of Salmonella.
    ARMSTRONG FB; WAGNER RP
    J Biol Chem; 1961 Jul; 236():2027-32. PubMed ID: 13684303
    [No Abstract]   [Full Text] [Related]  

  • 8. Comparative utilization of the alpha-keto and D- and L-alpha-hydroxy analogs of leucine, isoleucine and valine by chicks and rats.
    Boebel KP; Baker DH
    J Nutr; 1982 Oct; 112(10):1929-39. PubMed ID: 7119896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of keto acids during the growth cycle of Escherichia coli.
    Raunio R
    Acta Chem Scand; 1966; 20(1):11-6. PubMed ID: 5327037
    [No Abstract]   [Full Text] [Related]  

  • 10. Valine, leucine, and isoleucine metabolism by lactating bovine mammary tissue.
    Wohlt JE; Clark JH; Derrig RG; Davis CL
    J Dairy Sci; 1977 Dec; 60(12):1875-82. PubMed ID: 563875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isoleucine and valine metabolism in Escherichia coli. VII. A negative feedback mechanism controlling isoleucine biosynthesis.
    UMBARGER HE; BROWN B
    J Biol Chem; 1958 Aug; 233(2):415-20. PubMed ID: 13563512
    [No Abstract]   [Full Text] [Related]  

  • 12. Isoleucine and valine metabolism in Escherichia coli. XI. Valine inhibition of the growth of Escherichia coli strain K-12.
    LEAVITT RI; UMBARGER HE
    J Bacteriol; 1962 Mar; 83(3):624-30. PubMed ID: 14463257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. I. Identification.
    WEISSBACH A; HURWITZ J
    J Biol Chem; 1959 Apr; 234(4):705-9. PubMed ID: 13654246
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of perfusate leucine concentration on the metabolism of valine by the isolated rat hindquarter.
    Zapalowski C; Miller RH; Dixon JL; Harper AE
    Metabolism; 1984 Oct; 33(10):922-7. PubMed ID: 6482735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The accumulation of acetylmethylcarbinol and acetylethylcarbinol by a mutant of Neurospora crassa and its significance in the biosynthesis of isoleucine and valine.
    WAGNER RP; BERGQUIST A; FORREST HS
    J Biol Chem; 1959 Jan; 234(1):99-104. PubMed ID: 13610901
    [No Abstract]   [Full Text] [Related]  

  • 16. Catabolism of leucine to branched-chain fatty acids in Staphylococcus xylosus.
    Beck HC; Hansen AM; Lauritsen FR
    J Appl Microbiol; 2004; 96(5):1185-93. PubMed ID: 15078537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Valyl-tRNA synthetase from Escherichia coli MALDI-MS identification of the binding sites for L-valine or for noncognate amino acids upon qualitative comparative labeling with reactive amino-acid analogs.
    Hountondji C; Beauvallet C; Dessen P; Hoang-Naudin C; Schmitter JM; Pernollet JC; Blanquet S
    Eur J Biochem; 2000 Aug; 267(15):4789-98. PubMed ID: 10903513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. II. Enzymic studies.
    HURWITZ J; WEISSBACH A
    J Biol Chem; 1959 Apr; 234(4):710-2. PubMed ID: 13654247
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of branched-chain amino acid antagonism in the rat on tissue amino acid and keto acid concentrations.
    Shinnick FL; Harper AE
    J Nutr; 1977 May; 107(5):887-95. PubMed ID: 870654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoleucine and valine metabolism in Escherichia coli. VIII. The formation of acetolactate.
    UMBARGER HE; BROWN B
    J Biol Chem; 1958 Nov; 233(5):1156-60. PubMed ID: 13598751
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.