These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
61 related articles for article (PubMed ID: 1312122)
1. Shedding of a rhinovirus minor group binding protein: evidence for a Ca(2+)-dependent process. Hofer F; Berger B; Gruenberger M; Machat H; Dernick R; Tessmer U; Kuechler E; Blaas D J Gen Virol; 1992 Mar; 73 ( Pt 3)():627-32. PubMed ID: 1312122 [TBL] [Abstract][Full Text] [Related]
2. Characteristics of the minor group receptor of human rhinoviruses. Mischak H; Neubauer C; Kuechler E; Blaas D Virology; 1988 Mar; 163(1):19-25. PubMed ID: 2831654 [TBL] [Abstract][Full Text] [Related]
3. Entry of human rhinovirus 89 via ICAM-1 into HeLa epithelial cells is inhibited by actin skeleton disruption and by bafilomycin. Pfanzagl B; Andergassen D; Edlmayr J; Niespodziana K; Valenta R; Blaas D Arch Virol; 2014 Jan; 159(1):125-40. PubMed ID: 23913188 [TBL] [Abstract][Full Text] [Related]
4. Detection of the human rhinovirus minor group receptor on renaturing Western blots. Mischak H; Neubauer C; Berger B; Kuechler E; Blaas D J Gen Virol; 1988 Oct; 69 ( Pt 10)():2653-6. PubMed ID: 2844972 [TBL] [Abstract][Full Text] [Related]
5. Soluble LDL minireceptors. Minimal structure requirements for recognition of minor group human rhinovirus. Marlovits TC; Abrahamsberg C; Blaas D J Biol Chem; 1998 Dec; 273(50):33835-40. PubMed ID: 9837974 [TBL] [Abstract][Full Text] [Related]
6. Antigen processing and presentation of human rhinovirus to CD4 T cells is facilitated by binding to cellular receptors for virus. Hastings GZ; Francis MJ; Rowlands DJ; Chain BM Eur J Immunol; 1993 Jun; 23(6):1340-5. PubMed ID: 8099015 [TBL] [Abstract][Full Text] [Related]
7. Very-low-density lipoprotein receptor fragment shed from HeLa cells inhibits human rhinovirus infection. Marlovits TC; Abrahamsberg C; Blaas D J Virol; 1998 Dec; 72(12):10246-50. PubMed ID: 9811769 [TBL] [Abstract][Full Text] [Related]
8. Conformational changes, plasma membrane penetration, and infection by human rhinovirus type 2: role of receptors and low pH. Brabec M; Baravalle G; Blaas D; Fuchs R J Virol; 2003 May; 77(9):5370-7. PubMed ID: 12692239 [TBL] [Abstract][Full Text] [Related]
9. Human rhinovirus infection up-regulates MMP-9 production in airway epithelial cells via NF-{kappa}B. Tacon CE; Wiehler S; Holden NS; Newton R; Proud D; Leigh R Am J Respir Cell Mol Biol; 2010 Aug; 43(2):201-9. PubMed ID: 19783786 [TBL] [Abstract][Full Text] [Related]
10. Rhinovirus infection causes steroid resistance in airway epithelium through nuclear factor κB and c-Jun N-terminal kinase activation. Papi A; Contoli M; Adcock IM; Bellettato C; Padovani A; Casolari P; Stanciu LA; Barnes PJ; Johnston SL; Ito K; Caramori G J Allergy Clin Immunol; 2013 Nov; 132(5):1075-1085.e6. PubMed ID: 23871663 [TBL] [Abstract][Full Text] [Related]
11. Evidence for the direct involvement of the rhinovirus canyon in receptor binding. Colonno RJ; Condra JH; Mizutani S; Callahan PL; Davies ME; Murcko MA Proc Natl Acad Sci U S A; 1988 Aug; 85(15):5449-53. PubMed ID: 2840661 [TBL] [Abstract][Full Text] [Related]
12. Na and K changes in animal virus-infected HeLa cells. Nair CN J Gen Virol; 1984 Jun; 65 ( Pt 6)():1135-8. PubMed ID: 6327896 [TBL] [Abstract][Full Text] [Related]
13. X-ray structure of a minor group human rhinovirus bound to a fragment of its cellular receptor protein. Verdaguer N; Fita I; Reithmayer M; Moser R; Blaas D Nat Struct Mol Biol; 2004 May; 11(5):429-34. PubMed ID: 15064754 [TBL] [Abstract][Full Text] [Related]
14. Human rhinovirus type 54 infection via heparan sulfate is less efficient and strictly dependent on low endosomal pH. Khan AG; Pichler J; Rosemann A; Blaas D J Virol; 2007 May; 81(9):4625-32. PubMed ID: 17301156 [TBL] [Abstract][Full Text] [Related]
15. Avian homologs of the mammalian low-density lipoprotein receptor family bind minor receptor group human rhinovirus. Gruenberger M; Wandl R; Nimpf J; Hiesberger T; Schneider WJ; Kuechler E; Blaas D J Virol; 1995 Nov; 69(11):7244-7. PubMed ID: 7474146 [TBL] [Abstract][Full Text] [Related]
16. Application of FCS in studies of rhinovirus receptor binding and uncoating. Harutyunyan S; Sedivy A; Köhler G; Kowalski H; Blaas D Methods Mol Biol; 2015; 1221():83-100. PubMed ID: 25261309 [TBL] [Abstract][Full Text] [Related]
17. Isolation of a receptor protein involved in attachment of human rhinoviruses. Tomassini JE; Colonno RJ J Virol; 1986 May; 58(2):290-5. PubMed ID: 3009846 [TBL] [Abstract][Full Text] [Related]
18. Development of a homogeneous high-throughput screening assay for biological inhibitors of human rhinovirus infection. Newton P; O'Shea D; Wells E; Moakes K; Dunmore R; Butler RJ; Wilkinson T; Ward A; Casson N; Strain M; Vousden K; Lowe DC; Pattison DV; Carruthers AM; Sleeman MA; Vaughan TJ; Harrison P J Biomol Screen; 2013 Mar; 18(3):237-46. PubMed ID: 23207740 [TBL] [Abstract][Full Text] [Related]
19. Nitric oxide inhibits human rhinovirus-induced transcriptional activation of CXCL10 in airway epithelial cells. Koetzler R; Zaheer RS; Wiehler S; Holden NS; Giembycz MA; Proud D J Allergy Clin Immunol; 2009 Jan; 123(1):201-208.e9. PubMed ID: 18986693 [TBL] [Abstract][Full Text] [Related]
20. Rhinovirus induces MUC5AC in a human infection model and in vitro via NF-κB and EGFR pathways. Hewson CA; Haas JJ; Bartlett NW; Message SD; Laza-Stanca V; Kebadze T; Caramori G; Zhu J; Edbrooke MR; Stanciu LA; Kon OM; Papi A; Jeffery PK; Edwards MR; Johnston SL Eur Respir J; 2010 Dec; 36(6):1425-35. PubMed ID: 20525715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]