BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

544 related articles for article (PubMed ID: 1312330)

  • 1. Iron-induced ascorbate oxidation in plasma as monitored by ascorbate free radical formation. No spin-trapping evidence for the hydroxyl radical in iron-overloaded plasma.
    Minetti M; Forte T; Soriani M; Quaresima V; Menditto A; Ferrari M
    Biochem J; 1992 Mar; 282 ( Pt 2)(Pt 2):459-65. PubMed ID: 1312330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies by electron paramagnetic resonance of the importance of iron in the hydroxyl scavenging properties of ascorbic acid in plasma: effects of iron chelators.
    Benderitter M; Maupoil V; Vergely C; Dalloz F; Briot F; Rochette L
    Fundam Clin Pharmacol; 1998; 12(5):510-6. PubMed ID: 9794148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between 6-hydroxydopamine and transferrin: "Let my iron go".
    Borisenko GG; Kagan VE; Hsia CJ; Schor NF
    Biochemistry; 2000 Mar; 39(12):3392-400. PubMed ID: 10727233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals.
    Li L; Abe Y; Kanagawa K; Shoji T; Mashino T; Mochizuki M; Tanaka M; Miyata N
    Anal Chim Acta; 2007 Sep; 599(2):315-9. PubMed ID: 17870296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide dismutase enhanced the formation of hydroxyl radicals in a reaction mixture containing xanthone under UVA irradiation.
    Mori H; Iwahashi H
    Biosci Biotechnol Biochem; 2007 Dec; 71(12):3014-8. PubMed ID: 18071267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular reduction of the ascorbate free radical by human erythrocytes.
    May JM; Qu Zc; Cobb CE
    Biochem Biophys Res Commun; 2000 Jan; 267(1):118-23. PubMed ID: 10623584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ascorbic acid in human seminal plasma is protected from iron-mediated oxidation, but is potentially exposed to copper-induced damage.
    Menditto A; Pietraforte D; Minetti M
    Hum Reprod; 1997 Aug; 12(8):1699-705. PubMed ID: 9308796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ESR spin-trapping studies on the reaction of Fe2+ ions with H2O2-reactive species in oxygen toxicity in biology.
    Yamazaki I; Piette LH
    J Biol Chem; 1990 Aug; 265(23):13589-94. PubMed ID: 2166035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen-based free radical generation by ferrous ions and deferoxamine.
    Klebanoff SJ; Waltersdorph AM; Michel BR; Rosen H
    J Biol Chem; 1989 Nov; 264(33):19765-71. PubMed ID: 2555330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen-derived free radical and active oxygen complex formation from cobalt(II) chelates in vitro.
    Hanna PM; Kadiiska MB; Mason RP
    Chem Res Toxicol; 1992; 5(1):109-15. PubMed ID: 1316186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of Fe(2+)- and Fe(3+)- induced hydroxyl radical production by the iron-chelating drug deferiprone.
    Timoshnikov VA; Kobzeva TV; Polyakov NE; Kontoghiorghes GJ
    Free Radic Biol Med; 2015 Jan; 78():118-22. PubMed ID: 25451643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-electron reduction of vanadate by ascorbate and related free radical generation at physiological pH.
    Ding M; Gannett PM; Rojanasakul Y; Liu K; Shi X
    J Inorg Biochem; 1994 Aug; 55(2):101-12. PubMed ID: 8051539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin trapping study on the kinetics of Fe2+ autoxidation: formation of spin adducts and their destruction by superoxide.
    Kosaka H; Katsuki Y; Shiga T
    Arch Biochem Biophys; 1992 Mar; 293(2):401-8. PubMed ID: 1311166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ascorbate-dependent formation of hydroxyl radicals in the presence of iron chelates.
    Prabhu HR; Krishnamurthy S
    Indian J Biochem Biophys; 1993 Oct; 30(5):289-92. PubMed ID: 8144174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyl radical is not a product of the reaction of xanthine oxidase and xanthine. The confounding problem of adventitious iron bound to xanthine oxidase.
    Britigan BE; Pou S; Rosen GM; Lilleg DM; Buettner GR
    J Biol Chem; 1990 Oct; 265(29):17533-8. PubMed ID: 2170383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electron spin resonance (ESR) study on the mechanism of ascorbyl radical production by metal-binding proteins.
    Mouithys-Mickalad A; Deby C; Deby-Dupont G; Lamy M
    Biometals; 1998 Apr; 11(2):81-8. PubMed ID: 9542060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Alloxan radical-induced generation of reactive oxygen species in the reaction system of alloxan with ascorbate].
    Katoh M; Sakurai K; Fujimoto Y
    Yakugaku Zasshi; 2002 Oct; 122(10):831-9. PubMed ID: 12400164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible role of bacterial siderophores in inflammation. Iron bound to the Pseudomonas siderophore pyochelin can function as a hydroxyl radical catalyst.
    Coffman TJ; Cox CD; Edeker BL; Britigan BE
    J Clin Invest; 1990 Oct; 86(4):1030-7. PubMed ID: 2170442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox Interactions of Vitamin C and Iron: Inhibition of the Pro-Oxidant Activity by Deferiprone.
    Timoshnikov VA; Kobzeva TV; Polyakov NE; Kontoghiorghes GJ
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32486511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyridoxal isonicotinoyl hydrazone inhibits iron-induced ascorbate oxidation and ascorbyl radical formation.
    MaurĂ­cio AQ; Lopes GK; Gomes CS; Oliveira RG; Alonso A; Hermes-Lima M
    Biochim Biophys Acta; 2003 Mar; 1620(1-3):15-24. PubMed ID: 12595068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.