These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 1312803)
1. Electrostatic modulation of the kinetics of electron transfer from cytochrome c to cobalt phenanthroline by binding to lipid bilayers: effects of ionic strength and extent of incorporation of various negatively charged lipids. Cheddar G; Tollin G Arch Biochem Biophys; 1992 Apr; 294(1):188-92. PubMed ID: 1312803 [TBL] [Abstract][Full Text] [Related]
2. Electrostatic effects on the kinetics of electron transfer reactions of cytochrome c caused by binding to negatively charged lipid bilayer vesicles. Cheddar G; Tollin G Arch Biochem Biophys; 1991 Apr; 286(1):201-6. PubMed ID: 1654779 [TBL] [Abstract][Full Text] [Related]
3. Comparison of electron transfer kinetics between redox proteins free in solution and electrostatically complexed to a lipid bilayer membrane. Cheddar G; Tollin G Arch Biochem Biophys; 1994 May; 310(2):392-6. PubMed ID: 8179324 [TBL] [Abstract][Full Text] [Related]
4. Evidence for two distinct acidic phospholipid-binding sites in cytochrome c. Rytömaa M; Kinnunen PK J Biol Chem; 1994 Jan; 269(3):1770-4. PubMed ID: 8294426 [TBL] [Abstract][Full Text] [Related]
5. Liposome effect on the cytochrome c-catalyzed peroxidation of carbonyl substrates to triplet species. Nantes IL; Faljoni-Alario A; Vercesi AE; Santos KE; Bechara EJ Free Radic Biol Med; 1998 Sep; 25(4-5):546-53. PubMed ID: 9741591 [TBL] [Abstract][Full Text] [Related]
6. Redox potential and electrostatic effects in competitive inhibition of dual-path electron transfer reactions of spinach plastocyanin. Christensen HE; Conrad LS; Ulstrup J Arch Biochem Biophys; 1993 Mar; 301(2):385-90. PubMed ID: 8460947 [TBL] [Abstract][Full Text] [Related]
7. Surface plasmon resonance studies of complex formation between cytochrome c and bovine cytochrome c oxidase incorporated into a supported planar lipid bilayer. II. Binding of cytochrome c to oxidase-containing cardiolipin/phosphatidylcholine membranes. Salamon Z; Tollin G Biophys J; 1996 Aug; 71(2):858-67. PubMed ID: 8842224 [TBL] [Abstract][Full Text] [Related]
8. Interaction of cytochrome c with cardiolipin: an infrared spectroscopic study. Choi S; Swanson JM Biophys Chem; 1995 May; 54(3):271-8. PubMed ID: 7749061 [TBL] [Abstract][Full Text] [Related]
9. Redox protein electron-transfer mechanisms: electrostatic interactions as a determinant of reaction site in c-type cytochromes. Cheddar G; Meyer TE; Cusanovich MA; Stout CD; Tollin G Biochemistry; 1989 Jul; 28(15):6318-22. PubMed ID: 2551370 [TBL] [Abstract][Full Text] [Related]
10. Reversibility of the binding of cytochrome c to liposomes. Implications for lipid-protein interactions. Rytömaa M; Kinnunen PK J Biol Chem; 1995 Feb; 270(7):3197-202. PubMed ID: 7852404 [TBL] [Abstract][Full Text] [Related]
11. Interaction of peptide fragment 828-848 of the envelope glycoprotein of human immunodeficiency virus type I with lipid bilayers. Gawrisch K; Han KH; Yang JS; Bergelson LD; Ferretti JA Biochemistry; 1993 Mar; 32(12):3112-8. PubMed ID: 8457572 [TBL] [Abstract][Full Text] [Related]
12. Probing the extended lipid anchorage with cytochrome c and liposomes containing diacylphosphatidylglycerol lipids. Abbott BM; Lee J; Mohn ES; Barden MM; Overly KR; Breen JJ Biochim Biophys Acta Biomembr; 2018 May; 1860(5):1187-1192. PubMed ID: 29432713 [TBL] [Abstract][Full Text] [Related]
13. Transient kinetics of electron transfer reactions of flavodoxin: ionic strength dependence of semiquinone oxidation by cytochrome c, ferricyanide, and ferric ethylenediaminetetraacetic acid and computer modeling of reaction complexes. Simondsen RP; Weber PC; Salemme FR; Tollin G Biochemistry; 1982 Dec; 21(25):6366-75. PubMed ID: 6295464 [TBL] [Abstract][Full Text] [Related]
14. Selectivity of the anthracyclines for negatively charged model membranes: role of the amino group. Burke TG; Sartorelli AC; Tritton TR Cancer Chemother Pharmacol; 1988; 21(4):274-80. PubMed ID: 3370735 [TBL] [Abstract][Full Text] [Related]
15. Cytochrome c-induced increase of motionally restricted lipid in reconstituted cytochrome c oxidase membranes, revealed by spin-label ESR spectroscopy. Kleinschmidt JH; Powell GL; Marsh D Biochemistry; 1998 Aug; 37(33):11579-85. PubMed ID: 9708994 [TBL] [Abstract][Full Text] [Related]
16. Electron transfer between liposomal cytochrome c1 and cytochrome c: catalytic implications of electrostatic potentials. Kim CH; King TE; Balny C Biochem Biophys Res Commun; 1989 Aug; 163(1):276-83. PubMed ID: 2549990 [TBL] [Abstract][Full Text] [Related]
17. Binding of peripheral proteins to mixed lipid membranes: effect of lipid demixing upon binding. Heimburg T; Angerstein B; Marsh D Biophys J; 1999 May; 76(5):2575-86. PubMed ID: 10233072 [TBL] [Abstract][Full Text] [Related]
18. Surface plasmon resonance studies of complex formation between cytochrome c and bovine cytochrome c oxidase incorporated into a supported planar lipid bilayer. I. Binding of cytochrome c to cardiolipin/phosphatidylcholine membranes in the absence of oxidase. Salamon Z; Tollin G Biophys J; 1996 Aug; 71(2):848-57. PubMed ID: 8842223 [TBL] [Abstract][Full Text] [Related]
19. Interaction of horse heart cytochrome c with lipid bilayer membranes: effects on redox potentials. Salamon Z; Tollin G J Bioenerg Biomembr; 1997 Jun; 29(3):211-21. PubMed ID: 9298706 [TBL] [Abstract][Full Text] [Related]
20. Irreversible binding and activity control of the 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii at an anionic lipid bilayer surface. Li L; Storm P; Karlsson OP; Berg S; Wieslander A Biochemistry; 2003 Aug; 42(32):9677-86. PubMed ID: 12911309 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]