These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 13129291)

  • 41. Risk profiles of pork and poultry meat and risk ratings of various pathogen/product combinations.
    Mataragas M; Skandamis PN; Drosinos EH
    Int J Food Microbiol; 2008 Aug; 126(1-2):1-12. PubMed ID: 18602180
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Early post-mortem AMP-activated protein kinase (AMPK) activation leads to phosphofructokinase-2 and -1 (PFK-2 and PFK-1) phosphorylation and the development of pale, soft, and exudative (PSE) conditions in porcine longissimus muscle.
    Shen QW; Means WJ; Underwood KR; Thompson SA; Zhu MJ; McCormick RJ; Ford SP; Ellis M; Du M
    J Agric Food Chem; 2006 Jul; 54(15):5583-9. PubMed ID: 16848549
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design, development and application of a bioelectrochemical detection system for meat tenderness prediction.
    Zór K; Castellarnau M; Pascual D; Pich S; Plasencia C; Bardsley R; Nistor M
    Biosens Bioelectron; 2011 Jul; 26(11):4283-8. PubMed ID: 21596553
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The caspase proteolytic system in callipyge and normal lambs in longissimus, semimembranosus, and infraspinatus muscles during postmortem storage.
    Kemp CM; King DA; Shackelford SD; Wheeler TL; Koohmaraie M
    J Anim Sci; 2009 Sep; 87(9):2943-51. PubMed ID: 19420232
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Distribution and genetic characterization of porcine Campylobacter coli isolates].
    Alter T; Gaull F; Kasimir S; Gürtler M; Fehlhaber K
    Berl Munch Tierarztl Wochenschr; 2005; 118(5-6):214-9. PubMed ID: 15918485
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Proteolytic and physicochemical mechanisms involved in meat texture development.
    Ouali A
    Biochimie; 1992 Mar; 74(3):251-65. PubMed ID: 1535227
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biomarkers of meat tenderness: present knowledge and perspectives in regards to our current understanding of the mechanisms involved.
    Ouali A; Gagaoua M; Boudida Y; Becila S; Boudjellal A; Herrera-Mendez CH; Sentandreu MA
    Meat Sci; 2013 Dec; 95(4):854-70. PubMed ID: 23790743
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dietary zilpaterol hydrochloride. II. Carcass composition and meat palatability of beef cattle.
    Leheska JM; Montgomery JL; Krehbiel CR; Yates DA; Hutcheson JP; Nichols WT; Streeter M; Blanton JR; Miller MF
    J Anim Sci; 2009 Apr; 87(4):1384-93. PubMed ID: 18849379
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of feeding food waste-broiler litter and bakery by-product mixture to pigs.
    Kwak WS; Kang JS
    Bioresour Technol; 2006 Jan; 97(2):243-9. PubMed ID: 16171681
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced efficiency of a capillary-based biosensor over an optical fiber biosensor for detecting calpastatin.
    Bratcher CL; Grant SA; Vassalli JT; Lorenzen CL
    Biosens Bioelectron; 2008 Jun; 23(11):1674-9. PubMed ID: 18343100
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of rearing conditions on performance, behavioral, and physiological responses of pigs to preslaughter handling, carcass traits, and meat quality.
    Lebret B; Meunier-Salaün MC; Foury A; Mormède P; Dransfield E; Dourmad JY
    J Anim Sci; 2006 Sep; 84(9):2436-47. PubMed ID: 16908648
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sarcomere length influences mu-calpain-mediated proteolysis of bovine myofibrils.
    Weaver AD; Bowker BC; Gerrard DE
    J Anim Sci; 2009 Jun; 87(6):2096-103. PubMed ID: 19329480
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of different packaging atmospheres and injection-enhancement on beef tenderness, sensory attributes, desmin degradation, and display color.
    Grobbel JP; Dikeman ME; Hunt MC; Milliken GA
    J Anim Sci; 2008 Oct; 86(10):2697-710. PubMed ID: 18502880
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional proteomic analysis predicts beef tenderness and the tenderness differential.
    Zapata I; Zerby HN; Wick M
    J Agric Food Chem; 2009 Jun; 57(11):4956-63. PubMed ID: 19449808
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Application of wavelet transforms and an approximate deconvolution method for the resolution of noisy overlapped peaks in DNA capillary electrophoresis.
    Olazábal V; Prasad L; Stark P; Olivares JA
    Analyst; 2004 Jan; 129(1):73-81. PubMed ID: 14737587
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of nitric oxide and oxidation in vivo and postmortem on meat tenderness.
    Warner RD; Dunshea FR; Ponnampalam EN; Cottrell JJ
    Meat Sci; 2005 Sep; 71(1):205-17. PubMed ID: 22064065
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tenderness--an enzymatic view.
    Kemp CM; Sensky PL; Bardsley RG; Buttery PJ; Parr T
    Meat Sci; 2010 Feb; 84(2):248-56. PubMed ID: 20374783
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contribution of nitric oxide and protein S-nitrosylation to variation in fresh meat quality.
    Liu R; Warner RD; Zhou G; Zhang W
    Meat Sci; 2018 Oct; 144():135-148. PubMed ID: 29724527
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Investigation of the relationships between different enzymes and postmortem duck muscle tenderization.
    He J; Deng F; Pan D; Zeng X
    Poult Sci; 2019 Nov; 98(11):6125-6130. PubMed ID: 31198938
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Meat tenderness: advances in biology, biochemistry, molecular mechanisms and new technologies.
    Warner RD; Wheeler TL; Ha M; Li X; Bekhit AE; Morton J; Vaskoska R; Dunshea FR; Liu R; Purslow P; Zhang W
    Meat Sci; 2022 Mar; 185():108657. PubMed ID: 34998162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.