These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 13129448)
1. Plasma response to a single dose of dietary beta-cryptoxanthin esters from papaya (Carica papaya L.) or non-esterified beta-cryptoxanthin in adult human subjects: a comparative study. Breithaupt DE; Weller P; Wolters M; Hahn A Br J Nutr; 2003 Oct; 90(4):795-801. PubMed ID: 13129448 [TBL] [Abstract][Full Text] [Related]
2. Comparison of plasma responses in human subjects after the ingestion of 3R,3R'-zeaxanthin dipalmitate from wolfberry (Lycium barbarum) and non-esterified 3R,3R'-zeaxanthin using chiral high-performance liquid chromatography. Breithaupt DE; Weller P; Wolters M; Hahn A Br J Nutr; 2004 May; 91(5):707-13. PubMed ID: 15137922 [TBL] [Abstract][Full Text] [Related]
3. Frequent intake of tropical fruits that are rich in beta-cryptoxanthin is associated with higher plasma beta-cryptoxanthin concentrations in Costa Rican adolescents. Irwig MS; El-Sohemy A; Baylin A; Rifai N; Campos H J Nutr; 2002 Oct; 132(10):3161-7. PubMed ID: 12368412 [TBL] [Abstract][Full Text] [Related]
4. Plasma responses in human subjects after ingestions of multiple doses of natural alpha-cryptoxanthin: a pilot study. Schlatterer J; Breithaupt DE; Wolters M; Hahn A Br J Nutr; 2006 Aug; 96(2):371-6. PubMed ID: 16923233 [TBL] [Abstract][Full Text] [Related]
5. Carotenoids are more bioavailable from papaya than from tomato and carrot in humans: a randomised cross-over study. Schweiggert RM; Kopec RE; Villalobos-Gutierrez MG; Högel J; Quesada S; Esquivel P; Schwartz SJ; Carle R Br J Nutr; 2014 Feb; 111(3):490-8. PubMed ID: 23931131 [TBL] [Abstract][Full Text] [Related]
6. Carotenoid esters in vegetables and fruits: a screening with emphasis on beta-cryptoxanthin esters. Breithaupt DE; Bamedi A J Agric Food Chem; 2001 Apr; 49(4):2064-70. PubMed ID: 11308368 [TBL] [Abstract][Full Text] [Related]
7. LDL susceptibility to copper-induced oxidation after administration of a single dose of free or esterified beta-cryptoxanthin. Wolters M; Hahn A Ann Nutr Metab; 2004; 48(3):163-8. PubMed ID: 15133322 [TBL] [Abstract][Full Text] [Related]
8. Amount of fat in the diet affects bioavailability of lutein esters but not of alpha-carotene, beta-carotene, and vitamin E in humans. Roodenburg AJ; Leenen R; van het Hof KH; Weststrate JA; Tijburg LB Am J Clin Nutr; 2000 May; 71(5):1187-93. PubMed ID: 10799382 [TBL] [Abstract][Full Text] [Related]
9. Systemic levels of carotenoids from mangoes and papaya consumed in three forms (juice, fresh and dry slice). Gouado I; Schweigert FJ; Ejoh RA; Tchouanguep MF; Camp JV Eur J Clin Nutr; 2007 Oct; 61(10):1180-8. PubMed ID: 17637601 [TBL] [Abstract][Full Text] [Related]
10. Consumption of canned citrus fruit meals increases human plasma β-cryptoxanthin concentration, whereas lycopene and β-carotene concentrations did not change in healthy adults. Zhu CH; Gertz ER; Cai Y; Burri BJ Nutr Res; 2016 Jul; 36(7):679-88. PubMed ID: 27333959 [TBL] [Abstract][Full Text] [Related]
11. The Influence of Iron and Zinc Supplementation on the Bioavailability of Provitamin A Carotenoids from Papaya Following Consumption of a Vitamin A-Deficient Diet. Kana-Sop MM; Gouado I; Achu MB; Van Camp J; Amvam Zollo PH; Schweigert FJ; Oberleas D; Ekoe T J Nutr Sci Vitaminol (Tokyo); 2015; 61(3):205-14. PubMed ID: 26226956 [TBL] [Abstract][Full Text] [Related]
12. Chromatographic analysis of carotenol fatty acid esters in Physalis alkekengi and Hippophae rhamnoides. Pintea A; Varga A; Stepnowski P; Socaciu C; Culea M; Diehl HA Phytochem Anal; 2005; 16(3):188-95. PubMed ID: 15997852 [TBL] [Abstract][Full Text] [Related]
13. beta-Cryptoxanthin selectively increases in human chylomicrons upon ingestion of tangerine concentrate rich in beta-cryptoxanthin esters. Wingerath T; Stahl W; Sies H Arch Biochem Biophys; 1995 Dec; 324(2):385-90. PubMed ID: 8554331 [TBL] [Abstract][Full Text] [Related]
14. Comparison of the absorption efficiency of alpha- and beta-cryptoxanthin in female Wistar rats. Breithaupt DE; Yahia EM; Velázquez FJ Br J Nutr; 2007 Feb; 97(2):329-36. PubMed ID: 17298702 [TBL] [Abstract][Full Text] [Related]
15. Cervical tissue and plasma concentrations of alpha-carotene and beta-carotene in women are correlated. Gamboa-Pinto AJ; Rock CL; Ferruzzi MG; Schowinsky AB; Schwartz SJ J Nutr; 1998 Nov; 128(11):1933-6. PubMed ID: 9808645 [TBL] [Abstract][Full Text] [Related]
16. Chemoprevention by the oxygenated carotenoid beta-cryptoxanthin of N-methylnitrosourea-induced colon carcinogenesis in F344 rats. Narisawa T; Fukaura Y; Oshima S; Inakuma T; Yano M; Nishino H Jpn J Cancer Res; 1999 Oct; 90(10):1061-5. PubMed ID: 10595732 [TBL] [Abstract][Full Text] [Related]
17. Incorporation of carotenoids from paprika oleoresin into human chylomicrons. Pérez-Gálvez A; Martin HD; Sies H; Stahl W Br J Nutr; 2003 Jun; 89(6):787-93. PubMed ID: 12828795 [TBL] [Abstract][Full Text] [Related]
18. Cryptoxanthin structural isomers in oranges, orange juice, and other fruits. Schlatterer J; Breithaupt DE J Agric Food Chem; 2005 Aug; 53(16):6355-61. PubMed ID: 16076118 [TBL] [Abstract][Full Text] [Related]
19. beta-Cryptoxanthin stimulates bone formation and inhibits bone resorption in tissue culture in vitro. Yamaguchi M; Uchiyama S Mol Cell Biochem; 2004 Mar; 258(1-2):137-44. PubMed ID: 15030178 [TBL] [Abstract][Full Text] [Related]
20. Carotenoid intakes, assessed by dietary questionnaire, are associated with plasma carotenoid concentrations in an elderly population. Tucker KL; Chen H; Vogel S; Wilson PW; Schaefer EJ; Lammi-Keefe CJ J Nutr; 1999 Feb; 129(2):438-45. PubMed ID: 10024624 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]