These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 1312946)

  • 21. Characterization of the Na+-dependent Mg2+ transport in sheep ruminal epithelial cells.
    Schweigel M; Park HS; Etschmann B; Martens H
    Am J Physiol Gastrointest Liver Physiol; 2006 Jan; 290(1):G56-65. PubMed ID: 16109844
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intracellular and extracellular concentrations of Na+ modulate Mg2+ transport in rat ventricular myocytes.
    Tashiro M; Tursun P; Konishi M
    Biophys J; 2005 Nov; 89(5):3235-47. PubMed ID: 16085772
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sodium-magnesium antiport in Retzius neurones of the leech Hirudo medicinalis.
    Günzel D; Schlue WR
    J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):595-608. PubMed ID: 8815196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impaired cation transport in thymocytes of rats with chronic uremia includes the Na+/H+ antiporter.
    Greiber S; O'Neill WC; Mitch WE
    J Am Soc Nephrol; 1995 Mar; 5(9):1689-96. PubMed ID: 7780058
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reversibility of Na+/Mg2+ antiport in rat erythrocytes.
    Günther T; Vormann J
    Biochim Biophys Acta; 1995 Mar; 1234(1):105-10. PubMed ID: 7880850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sodium-dependent recovery of ionised magnesium concentration following magnesium load in rat heart myocytes.
    Almulla HA; Bush PG; Steele MG; Flatman PW; Ellis D
    Pflugers Arch; 2006 Feb; 451(5):657-67. PubMed ID: 16133259
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of glutamate-stimulated Mg2+ influx and subsequent Mg2+ efflux in rat forebrain neurones in culture.
    Stout AK; Li-Smerin Y; Johnson JW; Reynolds IJ
    J Physiol; 1996 May; 492 ( Pt 3)(Pt 3):641-57. PubMed ID: 8734978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modulation of renal ATPase activities by cyclic AMP.
    Giesen EM; Imbs JL; Grima M; Schmidt M; Schwartz J
    Biochem Biophys Res Commun; 1984 Apr; 120(2):619-24. PubMed ID: 6203522
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Effect of adenosine, AMP and papaverine on the cAMP content in thymocytes prelabelled with 14C-adenine].
    Dmitrenko NP; Bukhanevich AM; Goroshnikova TV
    Biull Eksp Biol Med; 1984 Aug; 98(8):181-3. PubMed ID: 6087955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mg2+ efflux is accomplished by an amiloride-sensitive Na+/Mg2+ antiport.
    Günther T; Vormann J
    Biochem Biophys Res Commun; 1985 Jul; 130(2):540-5. PubMed ID: 2992474
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of catecholamine-mediated destabilization of messenger RNA encoding Thy-1 protein in T-lineage cells.
    Wajeman-Chao SA; Lancaster SA; Graf LH; Chambers DA
    J Immunol; 1998 Nov; 161(9):4825-33. PubMed ID: 9794415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of magnesium efflux from Ehrlich ascites tumor cells.
    Wolf FI; Di Francesco A; Cittadini A
    Arch Biochem Biophys; 1994 Feb; 308(2):335-41. PubMed ID: 7509147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Opposite regulatory effects of cAMP and cGMP on sugar uptake in rat thymocytes.
    Segal J
    Am J Physiol; 1987 May; 252(5 Pt 1):E588-94. PubMed ID: 2437804
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of cyclic neucleotide monophosphates (cAMP, cGMP, cIMP, dibutyryl-cAMP) on transtubular net fluxes in rat kidneys.
    Fülgraff G; Meiforth A
    Naunyn Schmiedebergs Arch Pharmacol; 1974; 283(4):425-9. PubMed ID: 4370804
    [No Abstract]   [Full Text] [Related]  

  • 35. Norepinephrine evokes a marked Mg2+ efflux from liver cells.
    Romani A; Scarpa A
    FEBS Lett; 1990 Aug; 269(1):37-40. PubMed ID: 2167243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms of Mg2+ influx, efflux and intracellular 'muffling' in leech neurones and glial cells.
    Günzel D; Schlue WR
    Magnes Res; 2000 Jun; 13(2):123-38. PubMed ID: 10907230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The opposite effects of cyclic AMP-protein kinase a signal transduction pathway on renal cortical and medullary Na+,K+-ATPase activity.
    Bełtowski J; Marciniak A; Wójcicka G; Górny D
    J Physiol Pharmacol; 2002 Jun; 53(2):211-31. PubMed ID: 12120897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnesium transport in magnesium-loaded ferret red blood cells.
    Flatman PW; Smith LM
    Pflugers Arch; 1996 Oct; 432(6):995-1002. PubMed ID: 8781193
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beta-adrenergic inhibition of AGEPC-stimulated Na+/Ca2+ exchange and AGEPC-induced platelet activation.
    Kester M; Fisher RA; Olson MS
    Biochim Biophys Acta; 1989 Nov; 1014(2):195-202. PubMed ID: 2554977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cyclic adenosine monophosphate acutely inhibits and chronically stimulates Na/H antiporter in OKP cells.
    Cano A; Preisig P; Alpern RJ
    J Clin Invest; 1993 Oct; 92(4):1632-8. PubMed ID: 7691881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.