BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 13129522)

  • 1. Phased infectivity in Heterorhabditis megidis: the effects of infection density in the parental host and filial generation.
    Ryder JJ; Griffin CT
    Int J Parasitol; 2003 Sep; 33(10):1013-8. PubMed ID: 13129522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phased activity in Heterorhabditis megidis infective juveniles.
    Dempsey CM; Griffin CT
    Parasitology; 2002 Jun; 124(Pt 6):605-13. PubMed ID: 12118716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Paenibacillus nematophilus on the entomopathogenic nematode Heterorhabditis megidis.
    Enright MR; Griffin CT
    J Invertebr Pathol; 2005 Jan; 88(1):40-8. PubMed ID: 15707868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of day of emergence from the insect cadaver on the behavior and environmental tolerances of infective juveniles of the entomopathogenic nematode Heterorhabditis megidis (strain UK211).
    O'Leary SA; Stack CM; Chubb MA; Burnell AM
    J Parasitol; 1998 Aug; 84(4):665-72. PubMed ID: 9714191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are there temporarily non-infectious dauer stages in entomopathogenic nematode populations: a test of the phased infectivity hypothesis.
    Campbell JF; Koppenhöfer AM; Kaya HK; Chinnasri B
    Parasitology; 1999 May; 118 ( Pt 5)():499-508. PubMed ID: 10363283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density-dependent fecundity and infective juvenile production in the entomopathogenic nematode, Heterorhabditis megidis.
    Ryder JJ; Griffin CT
    Parasitology; 2002 Jul; 125(Pt 1):83-92. PubMed ID: 12166524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental temperature effects on five geographic isolates of the entomopathogenic nematode Steinernema feltiae (Nematoda: Steinernematidae).
    Hazir S; Stock SP; Kaya HK; Koppenhöfer AM; Keskin N
    J Invertebr Pathol; 2001 May; 77(4):243-50. PubMed ID: 11437527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ambush foraging entomopathogenic nematodes employ 'sprinters' for long-distance dispersal in the absence of hosts.
    Bal HK; Taylor RA; Grewal PS
    J Parasitol; 2014 Aug; 100(4):422-32. PubMed ID: 24650130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infectivity and reproductive potential of the Oswego strain of Heterorhabditis bacteriophora associated with life stages of the clover root curculio, Sitona hispidulus.
    Loya LJ; Hower AA
    J Invertebr Pathol; 2003 May; 83(1):63-72. PubMed ID: 12725814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Host range and infectivity of Heterorhabditis bacteriophora (Heterorhabditidae) from Ukraine.
    Stefanovska T; Pidlishyuk V; Kaya H
    Commun Agric Appl Biol Sci; 2008; 73(4):693-8. PubMed ID: 19226814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat shock enhances thermotolerance of infective juvenile insect-parasitic nematodes Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae).
    Selvan S; Grewal PS; Leustek T; Gaugler R
    Experientia; 1996 Jul; 52(7):727-30. PubMed ID: 8698117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Steinernema glaseri-infected host exudates on movement of conspecific infective juveniles.
    Kunkel BA; Shapiro-Ilan DI; Campbell JF; Lewis EE
    J Invertebr Pathol; 2006 Sep; 93(1):42-9. PubMed ID: 16750218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Desiccation survival of populations of the entomopathogenic nematodes Steinernema feltiae and Heterorhabditis megidis from Greece and the UK.
    Menti H; Wright DJ; Perry RN
    J Helminthol; 1997 Mar; 71(1):41-6. PubMed ID: 9166440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the change in energy reserves on the entomopathogenic nematode efficacy.
    El-Assal FM; El-Lakwah SF; Hasheesh WS; El-Mahdi M
    J Egypt Soc Parasitol; 2008 Dec; 38(3):929-44. PubMed ID: 19209775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential susceptibility of Dysmicoccus vaccinii (Homoptera: Pseudococcidae) to entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae).
    Stuart RJ; Polavarapu S; Lewis EE; Gaugler R
    J Econ Entomol; 1997 Aug; 90(4):925-32. PubMed ID: 9260541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil mediates the interaction of coexisting entomopathogenic nematodes with an insect host.
    Gruner DS; Ram K; Strong DR
    J Invertebr Pathol; 2007 Jan; 94(1):12-9. PubMed ID: 17005194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specificity of association between Paenibacillus spp. and the entomopathogenic nematodes, Heterorhabditis spp.
    Enright MR; Griffin CT
    Microb Ecol; 2004 Oct; 48(3):414-23. PubMed ID: 15692861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Content of saccharides and activity of alpha-glycosidases in Galleria mellonella larvae infected with entomopathogenic nematodes Heterorhabditis zealandica.
    Zółtowska K
    Wiad Parazytol; 2004; 50(3):495-501. PubMed ID: 16865959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density-dependent effects on Steinernema glaseri (Nematoda: Steinernematidae) within an insect host.
    Koppenhöfer AM; Kaya HK
    J Parasitol; 1995 Oct; 81(5):797-9. PubMed ID: 7472882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of infected insects on secondary invasion of steinernematid entomopathogenic nematodes.
    Glazer I
    Parasitology; 1997 Jun; 114 ( Pt 6)():597-604. PubMed ID: 9172429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.