BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 13129603)

  • 1. Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus.
    Chung KR; Shilts T; Ertürk U; Timmer LW; Ueng PP
    FEMS Microbiol Lett; 2003 Sep; 226(1):23-30. PubMed ID: 13129603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postbloom fruit drop of citrus and key lime anthracnose are caused by distinct phylogenetic lineages of Colletotrichum acutatum.
    Peres NA; Mackenzie SJ; Peever TL; Timmer LW
    Phytopathology; 2008 Mar; 98(3):345-52. PubMed ID: 18944086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering a genetic transformation system for Colletotrichum acutatum, the causal fungus of lime anthracnose and postbloom fruit drop of citrus.
    Chung KR; Shilts T; Li W; Timmer LW
    FEMS Microbiol Lett; 2002 Jul; 213(1):33-9. PubMed ID: 12127485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Colletotrichum acutatum gene encoding a putative pH-responsive transcription regulator is a key virulence determinant during fungal pathogenesis on citrus.
    You BJ; Choquer M; Chung KR
    Mol Plant Microbe Interact; 2007 Sep; 20(9):1149-60. PubMed ID: 17849717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene.
    Maor R; Haskin S; Levi-Kedmi H; Sharon A
    Appl Environ Microbiol; 2004 Mar; 70(3):1852-4. PubMed ID: 15006816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of indole-3-acetic acid via the indole-3-acetamide pathway in Streptomyces spp.
    Manulis S; Shafrir H; Epstein E; Lichter A; Barash I
    Microbiology (Reading); 1994 May; 140 ( Pt 5)():1045-1050. PubMed ID: 8025670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of phytohormones and differential gene expression in citrus flowers infected by the fungus Colletotrichum acutatum.
    Lahey KA; Yuan R; Burns JK; Ueng PP; Timmer LW; Kuang-Ren C
    Mol Plant Microbe Interact; 2004 Dec; 17(12):1394-401. PubMed ID: 15597745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous detection and quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) produced by rhizobacteria from l-tryptophan (Trp) using HPTLC.
    Goswami D; Thakker JN; Dhandhukia PC
    J Microbiol Methods; 2015 Mar; 110():7-14. PubMed ID: 25573587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of indole-3-pyruvic acid pathway-mediated biosynthesis of auxin in Neurospora crassa.
    Sardar P; Kempken F
    PLoS One; 2018; 13(2):e0192293. PubMed ID: 29420579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Colletotrichum spp. in Postharvest Anthracnose of Citrus and Survival of C. acutatum on Fruit.
    Timmer LW; Brown GE; Zitko SE
    Plant Dis; 1998 Apr; 82(4):415-418. PubMed ID: 30856890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent introduction and recombination in Colletotrichum acutatum populations associated with citrus postbloom fruit drop epidemics in São Paulo, Brazil.
    Ciampi-Guillardi M; Baldauf C; Souza AP; Silva-Junior GJ; Amorim L
    Phytopathology; 2014 Jul; 104(7):769-78. PubMed ID: 24423403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fungal Endophytes of Tahiti Lime (
    Muñoz-Guerrero J; Guerra-Sierra BE; Alvarez JC
    Front Bioeng Biotechnol; 2021; 9():650351. PubMed ID: 33869159
    [No Abstract]   [Full Text] [Related]  

  • 13. Bacillus subtilis based-formulation for the control of postbloom fruit drop of citrus.
    Klein MN; da Silva AC; Kupper KC
    World J Microbiol Biotechnol; 2016 Dec; 32(12):205. PubMed ID: 27804104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saccharomyces cerevisiae: A novel and efficient biological control agent for Colletotrichum acutatum during pre-harvest.
    Lopes MR; Klein MN; Ferraz LP; da Silva AC; Kupper KC
    Microbiol Res; 2015 Jun; 175():93-9. PubMed ID: 25960430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Host range and genetic relatedness of Colletotrichum acutatum isolates from fruit crops and leatherleaf fern in Florida.
    MacKenzie SJ; Peres NA; Barquero MP; Arauz LF; Timmer LW
    Phytopathology; 2009 May; 99(5):620-31. PubMed ID: 19351258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indole-3-Acetic Acid Biosynthesis Pathways in the Plant-Beneficial Bacterium Arthrobacter pascens ZZ21.
    Li M; Guo R; Yu F; Chen X; Zhao H; Li H; Wu J
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29389906
    [No Abstract]   [Full Text] [Related]  

  • 17. Biosynthetic pathway and optimal conditions for the production of indole-3-acetic acid by an endophytic fungus, Colletotrichum fructicola CMU-A109.
    Numponsak T; Kumla J; Suwannarach N; Matsui K; Lumyong S
    PLoS One; 2018; 13(10):e0205070. PubMed ID: 30335811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscopic analysis of colonization of Colletotrichum abscissum in citrus tissues.
    Savi DC; Rossi BJ; Rossi GR; Ferreira-Maba LS; Bini IH; Trindade EDS; Goulin EH; Machado MA; Glienke C
    Microbiol Res; 2019 Sep; 226():27-33. PubMed ID: 31284941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A gene with domains related to transcription regulation is required for pathogenicity in Colletotrichum acutatum causing Key lime anthracnose.
    Chen HQ; Cao L; Dekkers KL; Rollins JA; Ko NJ; Timmer LW; Chung KR
    Mol Plant Pathol; 2005 Sep; 6(5):513-25. PubMed ID: 20565676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural changes in the epidermis of petals of the sweet orange infected by Colletotrichum acutatum.
    Marques JP; Amorim L; Spósito MB; Appezzato-da-Glória B
    Protoplasma; 2016 Sep; 253(5):1233-42. PubMed ID: 26334287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.