BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 13129854)

  • 41. Synthesis, maturation, and trafficking of human Na+-dicarboxylate cotransporter NaDC1 requires the chaperone activity of cyclophilin B.
    Bergeron MJ; Bürzle M; Kovacs G; Simonin A; Hediger MA
    J Biol Chem; 2011 Apr; 286(13):11242-53. PubMed ID: 21257749
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Expression of EGFP/SDCT1 fusion protein, subcellular localization signal analysis, tissue distribution and electrophysiological function study.
    Bai X; Chen X; Fen Z; Wu D; Hou K; Cheng G; Peng L
    Sci China C Life Sci; 2004 Dec; 47(6):530-9. PubMed ID: 15620109
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single nucleotide polymorphisms in the human Na+-dicarboxylate cotransporter affect transport activity and protein expression.
    Pajor AM; Sun NN
    Am J Physiol Renal Physiol; 2010 Oct; 299(4):F704-11. PubMed ID: 20610529
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Demonstration of a Na(+)-dicarboxylate cotransporter in bovine adrenocortical cells.
    Steffgen J; Tolan D; Beéry E; Burckhardt G; Müller GA
    Pflugers Arch; 1999 Nov; 438(6):860-4. PubMed ID: 10591075
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Water transport by the renal Na(+)-dicarboxylate cotransporter.
    Meinild AK; Loo DD; Pajor AM; Zeuthen T; Wright EM
    Am J Physiol Renal Physiol; 2000 May; 278(5):F777-83. PubMed ID: 10807589
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional characterization of the rat multispecific organic anion transporter OAT1 mediating basolateral uptake of anionic drugs in the kidney.
    Uwai Y; Okuda M; Takami K; Hashimoto Y; Inui K
    FEBS Lett; 1998 Nov; 438(3):321-4. PubMed ID: 9827570
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Expression of the renal Na+/dicarboxylate cotransporter, NaDC-1, in COS-7 cells.
    Pajor AM; Valmonte HG
    Pflugers Arch; 1996 Feb; 431(4):645-51. PubMed ID: 8596711
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of isoleucine-554 in lithium binding by the Na+/dicarboxylate cotransporter NaDC1.
    Pajor AM; Sun NN
    Biochemistry; 2010 Oct; 49(41):8937-43. PubMed ID: 20845974
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Expression cloning and characterization of a renal organic anion transporter from winter flounder.
    Wolff NA; Werner A; Burkhardt S; Burckhardt G
    FEBS Lett; 1997 Nov; 417(3):287-91. PubMed ID: 9409735
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cationic amino acids involved in dicarboxylate binding of the flounder renal organic anion transporter.
    Wolff NA; Grünwald B; Friedrich B; Lang F; Godehardt S; Burckhardt G
    J Am Soc Nephrol; 2001 Oct; 12(10):2012-2018. PubMed ID: 11562399
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Generation and characterization of sodium-dicarboxylate cotransporter-deficient mice.
    Ho HT; Ko BC; Cheung AK; Lam AK; Tam S; Chung SK; Chung SS
    Kidney Int; 2007 Jul; 72(1):63-71. PubMed ID: 17410095
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of a rat Na+-dicarboxylate cotransporter.
    Chen XZ; Shayakul C; Berger UV; Tian W; Hediger MA
    J Biol Chem; 1998 Aug; 273(33):20972-81. PubMed ID: 9694847
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Localization of the calcium-regulated citrate transport process in proximal tubule cells.
    Hering-Smith KS; Mao W; Schiro FR; Coleman-Barnett J; Pajor AM; Hamm LL
    Urolithiasis; 2014 Jun; 42(3):209-19. PubMed ID: 24652587
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Arginine-349 and aspartate-373 of the Na(+)/dicarboxylate cotransporter are conformationally sensitive residues.
    Yao X; Pajor AM
    Biochemistry; 2002 Jan; 41(3):1083-90. PubMed ID: 11790133
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Protein kinase C activation downregulates human organic anion transporter 1-mediated transport through carrier internalization.
    Wolff NA; Thies K; Kuhnke N; Reid G; Friedrich B; Lang F; Burckhardt G
    J Am Soc Nephrol; 2003 Aug; 14(8):1959-68. PubMed ID: 12874449
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inhibition of the high-affinity brain glutamate transporter GLAST-1 via direct phosphorylation.
    Conradt M; Stoffel W
    J Neurochem; 1997 Mar; 68(3):1244-51. PubMed ID: 9048771
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transmembrane helix 7 in the Na+/dicarboxylate cotransporter 1 is an outer helix that contains residues critical for function.
    Pajor AM; Sun NN; Joshi AD; Randolph KM
    Biochim Biophys Acta; 2011 Jun; 1808(6):1454-61. PubMed ID: 21073858
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Activation of protein kinase C induces internalization of the GABA(C) receptors expressed in Xenopus oocytes.
    Kusama T; Hatama K; Saito K; Kizawa Y; Murakami H
    Jpn J Physiol; 2000 Aug; 50(4):429-35. PubMed ID: 11082541
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of Plasma Membrane Dicarboxylate Transporters in the Uptake and Toxicity of Diglycolic Acid, a Metabolite of Diethylene Glycol, in Human Proximal Tubule Cells.
    Tobin JD; Robinson CN; Luttrell-Williams ES; Landry GM; Dwyer D; McMartin KE
    Toxicol Sci; 2022 Oct; 190(1):1-12. PubMed ID: 36087010
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Expression of a rat renal sodium-dependent dicarboxylate transporter in Xenopus oocytes.
    Steffgen J; Kienle S; Scheyerl F; Franz HE
    Biochem J; 1994 Jan; 297 ( Pt 1)(Pt 1):35-9. PubMed ID: 8280108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.