These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 13129921)
1. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases. Min T; Kasahara H; Bedgar DL; Youn B; Lawrence PK; Gang DR; Halls SC; Park H; Hilsenbeck JL; Davin LB; Lewis NG; Kang C J Biol Chem; 2003 Dec; 278(50):50714-23. PubMed ID: 13129921 [TBL] [Abstract][Full Text] [Related]
2. Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases. Gang DR; Kasahara H; Xia ZQ; Vander Mijnsbrugge K; Bauw G; Boerjan W; Van Montagu M; Davin LB; Lewis NG J Biol Chem; 1999 Mar; 274(11):7516-27. PubMed ID: 10066819 [TBL] [Abstract][Full Text] [Related]
3. Crystal structures of apo-form and binary/ternary complexes of Podophyllum secoisolariciresinol dehydrogenase, an enzyme involved in formation of health-protecting and plant defense lignans. Youn B; Moinuddin SG; Davin LB; Lewis NG; Kang C J Biol Chem; 2005 Apr; 280(13):12917-26. PubMed ID: 15653677 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of isoflavone reductase from alfalfa (Medicago sativa L.). Wang X; He X; Lin J; Shao H; Chang Z; Dixon RA J Mol Biol; 2006 May; 358(5):1341-52. PubMed ID: 16600295 [TBL] [Abstract][Full Text] [Related]
7. A variable loop involved in the substrate selectivity of pinoresinol/lariciresinol reductase from Camellia sinensis. Wu Y; Xing D; Ma G; Dai X; Gao L; Xia T Phytochemistry; 2019 Jun; 162():1-9. PubMed ID: 30844490 [TBL] [Abstract][Full Text] [Related]
8. Effect of pinoresinol-lariciresinol reductases on biosynthesis of lignans with substrate selectivity in Schisandra chinensis. Feng J; Yao Y; Qiao Y; Ma X; Wu Z; Duan Y; Di P; Chen W; Xiao Y Phytochemistry; 2024 May; 221():114053. PubMed ID: 38479587 [TBL] [Abstract][Full Text] [Related]
9. (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia. Protein purification, cDNA cloning, heterologous expression and comparison to isoflavone reductase. Dinkova-Kostova AT; Gang DR; Davin LB; Bedgar DL; Chu A; Lewis NG J Biol Chem; 1996 Nov; 271(46):29473-82. PubMed ID: 8910615 [TBL] [Abstract][Full Text] [Related]
10. Pinoresinol-lariciresinol reductases with opposite enantiospecificity determine the enantiomeric composition of lignans in the different organs of Linum usitatissimum L. Hemmati S; von Heimendahl CB; Klaes M; Alfermann AW; Schmidt TJ; Fuss E Planta Med; 2010 Jun; 76(9):928-34. PubMed ID: 20514607 [TBL] [Abstract][Full Text] [Related]
11. Expression and functional analyses of a putative phenylcoumaran benzylic ether reductase in Arabidopsis thaliana. Nuoendagula ; Kamimura N; Mori T; Nakabayashi R; Tsuji Y; Hishiyama S; Saito K; Masai E; Kajita S Plant Cell Rep; 2016 Mar; 35(3):513-26. PubMed ID: 26601823 [TBL] [Abstract][Full Text] [Related]
12. Phenylcoumaran benzylic ether and isoflavonoid reductases are a new class of cross-reactive allergens in birch pollen, fruits and vegetables. Karamloo F; Wangorsch A; Kasahara H; Davin LB; Haustein D; Lewis NG; Vieths S Eur J Biochem; 2001 Oct; 268(20):5310-20. PubMed ID: 11606193 [TBL] [Abstract][Full Text] [Related]
13. In situ hybridization and immunolocalization of lignan reductases in woody tissues: implications for heartwood formation and other forms of vascular tissue preservation. Kwon M; Davin LB; Lewis NG Phytochemistry; 2001 Jul; 57(6):899-914. PubMed ID: 11423140 [TBL] [Abstract][Full Text] [Related]
14. Structure-based engineering of substrate specificity for pinoresinol-lariciresinol reductases. Xiao Y; Shao K; Zhou J; Wang L; Ma X; Wu D; Yang Y; Chen J; Feng J; Qiu S; Lv Z; Zhang L; Zhang P; Chen W Nat Commun; 2021 May; 12(1):2828. PubMed ID: 33990581 [TBL] [Abstract][Full Text] [Related]
15. [Cloning and functional characterization of the pinoresinol-lariciresinol reductase gene Li R; Ma X; Xiao Y Sheng Wu Gong Cheng Xue Bao; 2024 Jul; 40(7):2270-2281. PubMed ID: 39044590 [TBL] [Abstract][Full Text] [Related]
16. Pinoresinol-lariciresinol reductase: Substrate versatility, enantiospecificity, and kinetic properties. Hwang JK; Moinuddin SGA; Davin LB; Lewis NG Chirality; 2020 Jun; 32(6):770-789. PubMed ID: 32201979 [TBL] [Abstract][Full Text] [Related]
17. Pinoresinol-lariciresinol reductases with different stereospecificity from Linum album and Linum usitatissimum. von Heimendahl CB; Schäfer KM; Eklund P; Sjöholm R; Schmidt TJ; Fuss E Phytochemistry; 2005 Jun; 66(11):1254-63. PubMed ID: 15949826 [TBL] [Abstract][Full Text] [Related]
18. Molecular cloning and characterization of a novel isoflavone reductase-like gene (FcIRL) from high flavonoids-producing callus of Fagopyrum cymosum. Zhu QL; Guo TY; Sui SZ; Liu GD; Lei XH; Luo LL; Li MY Yao Xue Xue Bao; 2009 Jul; 44(7):809-19. PubMed ID: 19806925 [TBL] [Abstract][Full Text] [Related]
19. Three-steps in one-pot: whole-cell biocatalytic synthesis of enantiopure (+)- and (-)-pinoresinol via kinetic resolution. Ricklefs E; Girhard M; Urlacher VB Microb Cell Fact; 2016 May; 15():78. PubMed ID: 27160378 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of the ternary complex of 1,3,8-trihydroxynaphthalene reductase from Magnaporthe grisea with NADPH and an active-site inhibitor. Andersson A; Jordan D; Schneider G; Lindqvist Y Structure; 1996 Oct; 4(10):1161-70. PubMed ID: 8939741 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]