These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 13129948)

  • 1. Erwinia chrysanthemi tolC is involved in resistance to antimicrobial plant chemicals and is essential for phytopathogenesis.
    Barabote RD; Johnson OL; Zetina E; San Francisco SK; Fralick JA; San Francisco MJ
    J Bacteriol; 2003 Oct; 185(19):5772-8. PubMed ID: 13129948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of several multidrug resistance systems in Erwinia chrysanthemi pathogenesis.
    Maggiorani Valecillos A; Rodríguez Palenzuela P; López-Solanilla E
    Mol Plant Microbe Interact; 2006 Jun; 19(6):607-13. PubMed ID: 16776294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ybiT gene of Erwinia chrysanthemi codes for a putative ABC transporter and is involved in competitiveness against endophytic bacteria during infection.
    Llama-Palacios A; López-Solanilla E; Rodríguez-Palenzuela P
    Appl Environ Microbiol; 2002 Apr; 68(4):1624-30. PubMed ID: 11916677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efflux pump gene expression in Erwinia chrysanthemi is induced by exposure to phenolic acids.
    Ravirala RS; Barabote RD; Wheeler DM; Reverchon S; Tatum O; Malouf J; Liu H; Pritchard L; Hedley PE; Birch PR; Toth IK; Payton P; San Francisco MJ
    Mol Plant Microbe Interact; 2007 Mar; 20(3):313-20. PubMed ID: 17378434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tol-Pal proteins are critical cell envelope components of Erwinia chrysanthemi affecting cell morphology and virulence.
    Dubuisson JF; Vianney A; Hugouvieux-Cotte-Pattat N; Lazzaroni JC
    Microbiology (Reading); 2005 Oct; 151(Pt 10):3337-3347. PubMed ID: 16207916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the PhoP-PhoQ system in the virulence of Erwinia chrysanthemi strain 3937: involvement in sensitivity to plant antimicrobial peptides, survival at acid Hh, and regulation of pectolytic enzymes.
    Llama-Palacios A; López-Solanilla E; Rodríguez-Palenzuela P
    J Bacteriol; 2005 Mar; 187(6):2157-62. PubMed ID: 15743964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The outer membrane protein TolC is required for phytoalexin resistance and virulence of the fire blight pathogen Erwinia amylovora.
    Al-Karablieh N; Weingart H; Ullrich MS
    Microb Biotechnol; 2009 Jul; 2(4):465-75. PubMed ID: 21255278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmoregulated periplasmic glucan synthesis is required for Erwinia chrysanthemi pathogenicity.
    Page F; Altabe S; Hugouvieux-Cotte-Pattat N; Lacroix JM; Robert-Baudouy J; Bohin JP
    J Bacteriol; 2001 May; 183(10):3134-41. PubMed ID: 11325942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The RhaS activator controls the Erwinia chrysanthemi 3937 genes rhiN, rhiT and rhiE involved in rhamnogalacturonan catabolism.
    Hugouvieux-Cotte-Pattat N
    Mol Microbiol; 2004 Mar; 51(5):1361-74. PubMed ID: 14982630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential role of ferritins in iron metabolism and virulence of the plant-pathogenic bacterium Erwinia chrysanthemi 3937.
    Boughammoura A; Matzanke BF; Böttger L; Reverchon S; Lesuisse E; Expert D; Franza T
    J Bacteriol; 2008 Mar; 190(5):1518-30. PubMed ID: 18165304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PecS and PecT coregulate the synthesis of HrpN and pectate lyases, two virulence determinants in Erwinia chrysanthemi 3937.
    Nasser W; Reverchon S; Vedel R; Boccara M
    Mol Plant Microbe Interact; 2005 Nov; 18(11):1205-14. PubMed ID: 16353555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogenesis of Fe/S proteins and pathogenicity: IscR plays a key role in allowing Erwinia chrysanthemi to adapt to hostile conditions.
    Rincon-Enriquez G; Crété P; Barras F; Py B
    Mol Microbiol; 2008 Mar; 67(6):1257-73. PubMed ID: 18284573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative effects on virulence of mutations in the sap, pel, and hrp loci of Erwinia chrysanthemi.
    López-Solanilla E; Llama-Palacios A; Collmer A; García-Olmedo F; Rodríguez-Palenzuela P
    Mol Plant Microbe Interact; 2001 Mar; 14(3):386-93. PubMed ID: 11277436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pectate lyase PelI of Erwinia chrysanthemi 3937 belongs to a new family.
    Shevchik VE; Robert-Baudouy J; Hugouvieux-Cotte-Pattat N
    J Bacteriol; 1997 Dec; 179(23):7321-30. PubMed ID: 9393696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of VceC gain-of-function mutants that can function with the AcrAB multiple-drug-resistant efflux pump of Escherichia coli.
    Vediyappan G; Borisova T; Fralick JA
    J Bacteriol; 2006 Jun; 188(11):3757-62. PubMed ID: 16707668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catabolism of raffinose, sucrose, and melibiose in Erwinia chrysanthemi 3937.
    Hugouvieux-Cotte-Pattat N; Charaoui-Boukerzaza S
    J Bacteriol; 2009 Nov; 191(22):6960-7. PubMed ID: 19734309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small RNA Regulation of TolC, the Outer Membrane Component of Bacterial Multidrug Transporters.
    Parker A; Gottesman S
    J Bacteriol; 2016 Jan; 198(7):1101-13. PubMed ID: 26811318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The C-terminal domain of AcrA is essential for the assembly and function of the multidrug efflux pump AcrAB-TolC.
    Ge Q; Yamada Y; Zgurskaya H
    J Bacteriol; 2009 Jul; 191(13):4365-71. PubMed ID: 19411330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic exchange of multidrug efflux pumps among two enterobacterial species with distinctive ecological Niches.
    Al-Karablieh N; Weingart H; Ullrich MS
    Int J Mol Sci; 2009 Feb; 10(2):629-645. PubMed ID: 19333425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the LacI family regulators of Erwinia chrysanthemi 3937, involvement in the bacterial phytopathogenicity.
    Van Gijsegem F; Wlodarczyk A; Cornu A; Reverchon S; Hugouvieux-Cotte-Pattat N
    Mol Plant Microbe Interact; 2008 Nov; 21(11):1471-81. PubMed ID: 18842096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.