BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 13129950)

  • 1. Control of enzyme IIscr and sucrose-6-phosphate hydrolase activities in Streptococcus mutans by transcriptional repressor ScrR binding to the cis-active determinants of the scr regulon.
    Wang B; Kuramitsu HK
    J Bacteriol; 2003 Oct; 185(19):5791-9. PubMed ID: 13129950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional regulation of the sucrase gene of Staphylococcus xylosus by the repressor ScrR.
    Gering M; Brückner R
    J Bacteriol; 1996 Jan; 178(2):462-9. PubMed ID: 8550467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of sucrose-6-phosphate hydrolase activity in Streptococcus mutans: characterization of the scrR gene.
    Hiratsuka K; Wang B; Sato Y; Kuramitsu H
    Infect Immun; 1998 Aug; 66(8):3736-43. PubMed ID: 9673256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular analysis of the scrA and scrB genes from Klebsiella pneumoniae and plasmid pUR400, which encode the sucrose transport protein Enzyme II Scr of the phosphotransferase system and a sucrose-6-phosphate invertase.
    Titgemeyer F; Jahreis K; Ebner R; Lengeler JW
    Mol Gen Genet; 1996 Feb; 250(2):197-206. PubMed ID: 8628219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genes controlling sucrose utilization in Clostridium beijerinckii NCIMB 8052 constitute an operon.
    Reid SJ; Rafudeen MS; Leat NG
    Microbiology (Reading); 1999 Jun; 145 ( Pt 6)():1461-1472. PubMed ID: 10411273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular analysis of sucrose metabolism of Erwinia amylovora and influence on bacterial virulence.
    Bogs J; Geider K
    J Bacteriol; 2000 Oct; 182(19):5351-8. PubMed ID: 10986236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence analysis of scrA and scrB from Streptococcus sobrinus 6715.
    Chen YY; Lee LN; LeBlanc DJ
    Infect Immun; 1993 Jun; 61(6):2602-10. PubMed ID: 8500898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and sequence analysis of the scrA gene encoding enzyme IIScr of the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system.
    Sato Y; Poy F; Jacobson GR; Kuramitsu HK
    J Bacteriol; 1989 Jan; 171(1):263-71. PubMed ID: 2536656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon catabolite repression of sucrose utilization in Staphylococcus xylosus: catabolite control protein CcpA ensures glucose preference and autoregulatory limitation of sucrose utilization.
    Jankovic I; Brückner R
    J Mol Microbiol Biotechnol; 2007; 12(1-2):114-20. PubMed ID: 17183218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular analysis of two ScrR repressors and of a ScrR-FruR hybrid repressor for sucrose and D-fructose specific regulons from enteric bacteria.
    Jahreis K; Lengeler JW
    Mol Microbiol; 1993 Jul; 9(1):195-209. PubMed ID: 8412665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cloning and characterization of scrB, the structural gene for the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system sucrose-6-phosphate hydrolase.
    Lunsford RD; Macrina FL
    J Bacteriol; 1986 May; 166(2):426-34. PubMed ID: 3009399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic analysis of scrA and scrB from Streptococcus sobrinus 6715.
    Chen YY; LeBlanc DJ
    Infect Immun; 1992 Sep; 60(9):3739-46. PubMed ID: 1500184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmid-mediated sucrose metabolism in Escherichia coli K12: mapping of the scr genes of pUR400.
    Schmid K; Ebner R; Altenbuchner J; Schmitt R; Lengeler JW
    Mol Microbiol; 1988 Jan; 2(1):1-8. PubMed ID: 2835584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the major promoter for the plasmid-encoded sucrose genes scrY, scrA, and scrB.
    Cowan PJ; Nagesha H; Leonard L; Howard JL; Pittard AJ
    J Bacteriol; 1991 Dec; 173(23):7464-70. PubMed ID: 1938944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repeated DNA sequence involved in mutations affecting transport of sucrose into Streptococcus mutans V403 via the phosphoenolpyruvate phosphotransferase system.
    Macrina FL; Jones KR; Alpert CA; Chassy BM; Michalek SM
    Infect Immun; 1991 Apr; 59(4):1535-43. PubMed ID: 2004831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence analysis of the Streptococcus mutans scrB gene.
    Sato Y; Kuramitsu HK
    Infect Immun; 1988 Aug; 56(8):1956-60. PubMed ID: 3397182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Streptococcus mutans PTS Bio by the transcriptional repressor NigR.
    Vujanac M; Iyer VS; Sengupta M; Ajdic D
    Mol Oral Microbiol; 2015 Aug; 30(4):280-94. PubMed ID: 25580872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transposon-encoded sucrose metabolism in Lactococcus lactis. Purification of sucrose-6-phosphate hydrolase and genetic linkage to N5-(L-1-carboxyethyl)-L-ornithine synthase in strain K1.
    Thompson J; Nguyen NY; Sackett DL; Donkersloot JA
    J Biol Chem; 1991 Aug; 266(22):14573-9. PubMed ID: 1650362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of scrA::lacZ gene fusions to investigate regulation of the sucrose PTS of Streptococcus mutans.
    Sato Y; Yamamoto Y; Suzuki R; Kizaki H; Kuramitsu HK
    FEMS Microbiol Lett; 1991 Apr; 63(2-3):339-45. PubMed ID: 1905660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of the sucrose 6-phosphate hydrolase gene from Streptococcus mutans.
    Hayakawa M; Aoki H; Kuramitsu HK
    Infect Immun; 1986 Sep; 53(3):582-6. PubMed ID: 3017864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.