These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 1313014)
1. The energy transduction mechanism is different among P-type ion-transporting ATPases. Acetyl phosphate causes uncoupling between hydrolysis and ion transport in H+,K(+)-ATPase. Asano S; Kamiya S; Takeguchi N J Biol Chem; 1992 Apr; 267(10):6590-5. PubMed ID: 1313014 [TBL] [Abstract][Full Text] [Related]
2. The conformation of H,K-ATPase determines the nucleoside triphosphate (NTP) selectivity for active proton transport. Reenstra WW; Crothers J; Forte JG Biochemistry; 2007 Sep; 46(35):10145-52. PubMed ID: 17696364 [TBL] [Abstract][Full Text] [Related]
3. K(+)-site-directed pyridine derivative, AU-1421, activates hydrolysis of the K(+)-sensitive phosphoenzyme of sarcoplasmic reticulum Ca(2+)-ATPase and inactivates that of K(+)-transporting ATPases. Fukushima Y; Asano S; Takada J Biochim Biophys Acta; 1992 Apr; 1106(1):71-6. PubMed ID: 1533792 [TBL] [Abstract][Full Text] [Related]
4. Monoclonal antibody HK4001 completely inhibits K(+)-dependent ATP hydrolysis and H+ transport of hog gastric H+,K(+)-ATPase. Asano S; Tabuchi Y; Takeguchi N J Biochem; 1989 Dec; 106(6):1074-9. PubMed ID: 2560778 [TBL] [Abstract][Full Text] [Related]
5. ATP and acetyl phosphate induces molecular events near the ATP binding site and the membrane domain of Na+,K+-ATPase. The tetrameric nature of the enzyme. Tsuda T; Kaya S; Yokoyama T; Hayashi Y; Taniguchi K J Biol Chem; 1998 Sep; 273(38):24339-45. PubMed ID: 9733721 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of ion pump ATPase activity by 3'-O-(4-benzoyl)benzoyl-ATP (BzATP): assessment of BzATP as an active site-directed probe. Tran CM; Farley RA Biochim Biophys Acta; 1986 Aug; 860(1):9-14. PubMed ID: 3015213 [TBL] [Abstract][Full Text] [Related]
7. Comparison of ATP binding in the active sites of (Na+ + K(+)-ATPase, Mg(2+)-ATPase and Ca(2+)-ATPase with low affinity to calcium from cardiac sarcolemma. Monosíková R; Breier A; Ziegelhöffer A; Sima F Bratisl Lek Listy; 1991; 92(3-4):142-5. PubMed ID: 1851462 [TBL] [Abstract][Full Text] [Related]
8. The substitution of calcium for magnesium in H+,K+-ATPase catalytic cycle. Evidence for two actions of divalent cations. Mendlein J; Sachs G J Biol Chem; 1989 Nov; 264(31):18512-9. PubMed ID: 2553712 [TBL] [Abstract][Full Text] [Related]
9. The amino acid sequence of an active site peptide from the H,K-ATPase of gastric mucosa. Farley RA; Faller LD J Biol Chem; 1985 Apr; 260(7):3899-901. PubMed ID: 2984187 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the phosphorylated intermediate of the K+-ouabain-insensitive ATPase of the rabbit colon brush-border membrane. Gustin MC; Goodman DB J Biol Chem; 1982 Aug; 257(16):9629-33. PubMed ID: 6125506 [TBL] [Abstract][Full Text] [Related]
11. ATP inactivates hydrolysis of the K+-sensitive phosphoenzyme of kidney Na+,K+-transport ATPase and activates that of muscle sarcoplasmic reticulum Ca2+-transport ATPase. Fukushima Y; Yamada S; Nakao M J Biochem; 1984 Feb; 95(2):359-68. PubMed ID: 6325400 [TBL] [Abstract][Full Text] [Related]
12. Kinetics of the acid pump in the stomach. Proton transport and hydrolysis of ATP and p-nitrophenyl phosphate by the gastric H,K-ATPase. Ljungström M; Mårdh S J Biol Chem; 1985 May; 260(9):5440-4. PubMed ID: 2985593 [TBL] [Abstract][Full Text] [Related]
13. Comparative studies on the ATPase-binding sites in Ca2+-ATPase and (Na+ + K+)-ATPase by the use of ATP-analogues. Schoner W; Serpersu EH; Pauls H; Patzelt-Wenczler R; Kreickmann H; Rempeters G Z Naturforsch C Biosci; 1982; 37(7-8):692-705. PubMed ID: 6291269 [TBL] [Abstract][Full Text] [Related]
14. Role of water in processes of energy transduction: Ca2+-transport ATPase and inorganic pyrophosphatase. de Meis L Biochem Soc Symp; 1985; 50():97-125. PubMed ID: 2428374 [TBL] [Abstract][Full Text] [Related]
15. Calcium binding to the H+,K(+)-ATPase. Evidence for a divalent cation site that is occupied during the catalytic cycle. Mendlein J; Ditmars ML; Sachs G J Biol Chem; 1990 Sep; 265(26):15590-8. PubMed ID: 2168418 [TBL] [Abstract][Full Text] [Related]
16. Slippage and uncoupling in P-type cation pumps; implications for energy transduction mechanisms and regulation of metabolism. Berman MC Biochim Biophys Acta; 2001 Aug; 1513(2):95-121. PubMed ID: 11470083 [TBL] [Abstract][Full Text] [Related]
17. Half-site modification of Lys-480 of the Na+,K+-ATPase alpha-chain with pyridoxal 5'-diphospho-5'-adenosine reduces ATP-dependent phosphorylation stoichiometry from half to a quarter. Tsuda T; Kaya S; Yokoyama T; Hayashi Y; Taniguchi K J Biol Chem; 1998 Sep; 273(38):24334-8. PubMed ID: 9733720 [TBL] [Abstract][Full Text] [Related]
18. Some total and partial reactions of Na+/K+-ATPase using ATP and acetyl phosphate as a substrate. Campos M; Berberián G; Beaugé L Biochim Biophys Acta; 1988 Feb; 938(1):7-16. PubMed ID: 2827776 [TBL] [Abstract][Full Text] [Related]
19. Mutation to the glutamate in the fourth membrane segment of Na+,K+-ATPase and Ca2+-ATPase affects cation binding from both sides of the membrane and destabilizes the occluded enzyme forms. Vilsen B; Andersen JP Biochemistry; 1998 Aug; 37(31):10961-71. PubMed ID: 9692989 [TBL] [Abstract][Full Text] [Related]
20. Ca(2+)-dependent and thapsigargin-inhibited phosphorylation of Na+,K(+)-ATPase catalytic domain following chimeric recombination with Ca(2+)-ATPase. Sumbilla C; Lu L; Lewis DE; Inesi G; Ishii T; Takeyasu K; Feng Y; Fambrough DM J Biol Chem; 1993 Oct; 268(28):21185-92. PubMed ID: 8407954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]