BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 1313290)

  • 1. Spin-label electron paramagnetic resonance and differential scanning calorimetry studies of the interaction between mitochondrial cytochrome c oxidase and adenosine triphosphate synthase complex.
    Qiu ZH; Yu L; Yu CA
    Biochemistry; 1992 Mar; 31(12):3297-302. PubMed ID: 1313290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin-label electron paramagnetic resonance and differential scanning calorimetry studies of the interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c reductases.
    Gwak SH; Yu L; Yu CA
    Biochemistry; 1986 Nov; 25(23):7675-82. PubMed ID: 3026458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of protein-phospholipid interaction in isolated mitochondrial ubiquinone-cytochrome c reductase.
    Gwak SH; Yu L; Yu CA
    Biochim Biophys Acta; 1985 Sep; 809(2):187-98. PubMed ID: 2994720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between cytochrome caa3 and F1F0-ATP synthase of alkaliphilic Bacillus pseudofirmus OF4 is demonstrated by saturation transfer electron paramagnetic resonance and differential scanning calorimetry assays.
    Liu X; Gong X; Hicks DB; Krulwich TA; Yu L; Yu CA
    Biochemistry; 2007 Jan; 46(1):306-13. PubMed ID: 17198401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on protein-lipid interactions in cytochrome c oxidase by differential scanning calorimetry.
    Yu CA; Gwak SH; Yu L
    Biochim Biophys Acta; 1985 Feb; 812(3):656-64. PubMed ID: 2982398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying regions of membrane proteins in contact with phospholipid head groups: covalent attachment of a new class of aldehyde lipid labels to cytochrome c oxidase.
    McMillen DA; Volwerk JJ; Ohishi J; Erion M; Keana JF; Jost PC; Griffith OH
    Biochemistry; 1986 Jan; 25(1):182-93. PubMed ID: 3006751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal inactivation of electron-transport functions and F0F1-ATPase activities.
    Tomita M; Knox BE; Tsong TY
    Biochim Biophys Acta; 1987 Oct; 894(1):16-28. PubMed ID: 2889470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calorimetric studies of cytochrome oxidase-phospholipid interactions.
    Semin BK; Saraste M; Wikström M
    Biochim Biophys Acta; 1984 Jan; 769(1):15-22. PubMed ID: 6318820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angular dependences of perpendicular and parallel mode electron paramagnetic resonance of oxidized beef heart cytochrome c oxidase.
    Hunter DJ; Oganesyan VS; Salerno JC; Butler CS; Ingledew WJ; Thomson AJ
    Biophys J; 2000 Jan; 78(1):439-50. PubMed ID: 10620307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of bovine heart mitochondrial cytochrome c oxidase dimers in Triton X-100 and phospholipid vesicles by chemical cross-linking.
    Estey LA; Prochaska LJ
    Biochemistry; 1993 Dec; 32(48):13270-6. PubMed ID: 8241183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein and lipid structural transitions in cytochrome c oxidase-dimyristoylphosphatidylcholine reconstitutions.
    Rigell CW; de Saussure C; Freire E
    Biochemistry; 1985 Sep; 24(20):5638-46. PubMed ID: 3000433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of lipid regions in a cytochrome oxidase-lipid complex using spin labeling electron spin resonance: distribution effects on the spin label.
    Benga G; Porumb T; Wrigglesworth JM
    J Bioenerg Biomembr; 1981 Dec; 13(5-6):269-83. PubMed ID: 6277883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin-label study of the relation between enzymatic activity and lipid-protein organization in reconstituted cytochrome c oxidase.
    Denes AS; Stanacev NZ
    Can J Biochem; 1978 Sep; 56(9):905-15. PubMed ID: 215292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical and biophysical properties of purified phospholipid vesicles containing bovine heart cytochrome c oxidase.
    Nguyen XT; Pabarue HA; Geyer RR; Shroyer LA; Estey LA; Parilo MS; Wilson KS; Prochaska LJ
    Protein Expr Purif; 2002 Oct; 26(1):122-30. PubMed ID: 12356479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phospholipid vesicles containing bovine heart mitochondrial cytochrome c oxidase and subunit III-deficient enzyme: analysis of respiratory control and proton translocating activities.
    Wilson KS; Prochaska LJ
    Arch Biochem Biophys; 1990 Nov; 282(2):413-20. PubMed ID: 2173485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear electron paramagnetic resonance studies of the interaction of cytochrome c oxidase with spin-labeled lipids in gel-phase membranes.
    Páli T; Kleinschmidt JH; Powell GL; Marsh D
    Biochemistry; 2000 Mar; 39(9):2355-61. PubMed ID: 10694403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of subunit g of yeast mitochondrial F1F0-ATP synthase, a protein required for maximal activity of cytochrome c oxidase.
    Boyle GM; Roucou X; Nagley P; Devenish RJ; Prescott M
    Eur J Biochem; 1999 Jun; 262(2):315-23. PubMed ID: 10336613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of phospholipids with the mitochondrial cytochrome-c reductase studied by spin-label ESR and NMR spectroscopy.
    Hayer-Hartl M; Schägger H; von Jagow G; Beyer K
    Eur J Biochem; 1992 Oct; 209(1):423-30. PubMed ID: 1327777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnesium mediated change in physical state of phospholipid modulates membrane ATPase activity.
    Yang FY; Huang YG; Zhang XF; Guo BQ
    Magnes Res; 1988 Jul; 1(1-2):13-21. PubMed ID: 2908561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phospholipid-dependent interaction between dibromothymoquinone and iron-sulfur protein in mitochondrial ubiquinol-cytochrome c reductase.
    Gwak SH; Yang FD; Yu L; Yu CA
    Biochim Biophys Acta; 1987 Mar; 890(3):319-25. PubMed ID: 3028477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.