BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 1313365)

  • 1. Characterization of the endogenous ADP-ribosylation of wild-type and mutant elongation factor 2 in eukaryotic cells.
    Fendrick JL; Iglewski WJ; Moehring JM; Moehring TJ
    Eur J Biochem; 1992 Apr; 205(1):25-31. PubMed ID: 1313365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endogenous ADP-ribosylation of elongation factor 2 in polyoma virus-transformed baby hamster kidney cells.
    Fendrick JL; Iglewski WJ
    Proc Natl Acad Sci U S A; 1989 Jan; 86(2):554-7. PubMed ID: 2536169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular ADP-ribosyltransferase with the same mechanism of action as diphtheria toxin and Pseudomonas toxin A.
    Lee H; Iglewski WJ
    Proc Natl Acad Sci U S A; 1984 May; 81(9):2703-7. PubMed ID: 6326138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ADP-ribosyltransferase from beef liver which ADP-ribosylates elongation factor-2.
    Iglewski WJ; Lee H; Muller P
    FEBS Lett; 1984 Jul; 173(1):113-8. PubMed ID: 6086394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and properties of an altered form of elongation factor 2 from mutant cells resistant to intoxication by diphtheria toxin.
    Iglewski WJ; Lee H
    Eur J Biochem; 1983 Aug; 134(2):237-40. PubMed ID: 6307688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1-N6-Etheno-ADP-ribosylation of elongation factor-2 by diphtheria toxin.
    Giovane A; Balestrieri C; Quagliuolo L; Servillo L
    FEBS Lett; 1985 Oct; 191(2):191-4. PubMed ID: 2996930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly frequent single amino acid substitution in mammalian elongation factor 2 (EF-2) results in expression of resistance to EF-2-ADP-ribosylating toxins.
    Kohno K; Uchida T
    J Biol Chem; 1987 Sep; 262(25):12298-305. PubMed ID: 2887567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Posttranslational modification of elongation factor 2 in diphtheria-toxin-resistant mutants of CHO-K1 cells.
    Moehring JM; Moehring TJ; Danley DE
    Proc Natl Acad Sci U S A; 1980 Feb; 77(2):1010-4. PubMed ID: 6928655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active-site mutations of the diphtheria toxin catalytic domain: role of histidine-21 in nicotinamide adenine dinucleotide binding and ADP-ribosylation of elongation factor 2.
    Blanke SR; Huang K; Wilson BA; Papini E; Covacci A; Collier RJ
    Biochemistry; 1994 May; 33(17):5155-61. PubMed ID: 8172890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of non-ADP-ribosylatable, diphtheria toxin-resistant elongation factor 2 in Saccharomyces cerevisiae.
    Kimata Y; Harashima S; Kohno K
    Biochem Biophys Res Commun; 1993 Mar; 191(3):1145-51. PubMed ID: 8466491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mutation in codon 717 of the CHO-K1 elongation factor 2 gene prevents the first step in the biosynthesis of diphthamide.
    Foley BT; Moehring JM; Moehring TJ
    Somat Cell Mol Genet; 1992 May; 18(3):227-31. PubMed ID: 1353910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endogenous ADP-ribosylation for eukaryotic elongation factor 2: evidence of two different sites and reactions.
    Bektaş M; Nurten R; Ergen K; Bermek E
    Cell Biochem Funct; 2006; 24(4):369-80. PubMed ID: 16142694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diphtheria toxin. Site and configuration of ADP-ribosylation of diphthamide in elongation factor 2.
    Oppenheimer NJ; Bodley JW
    J Biol Chem; 1981 Aug; 256(16):8579-81. PubMed ID: 6267047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of diphtheria-toxin-resistant mutants lacking receptor function or containing nonribosylatable elongation factor 2.
    Kohno K; Uchida T; Mekada E; Okada Y
    Somat Cell Mol Genet; 1985 Sep; 11(5):421-31. PubMed ID: 3862242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide binding to elongation factor 2 inactivated by diphtheria toxin.
    Burns G; Abraham AK; Vedeler A
    FEBS Lett; 1986 Nov; 208(2):217-20. PubMed ID: 3780964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced ribosomal binding of eukaryotic elongation factor 2 following ADP-ribosylation. Difference in binding selectivity between polyribosomes and reconstituted monoribosomes.
    Nygård O; Nilsson L
    Biochim Biophys Acta; 1985 Feb; 824(2):152-62. PubMed ID: 3970930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular ADP-ribosylation of elongation factor 2.
    Iglewski WJ
    Mol Cell Biochem; 1994 Sep; 138(1-2):131-3. PubMed ID: 7898455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of diphthamide synthesis by 5'-deoxy-5'-methylthioadenosine in murine lymphoma cells.
    Yamanaka H; Kajander EO; Carson DA
    Biochim Biophys Acta; 1986 Sep; 888(2):157-62. PubMed ID: 3091083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of diphthamide in Saccharomyces cerevisiae. Partial purification and characterization of a specific S-adenosylmethionine:elongation factor 2 methyltransferase.
    Chen JY; Bodley JW
    J Biol Chem; 1988 Aug; 263(24):11692-6. PubMed ID: 3042777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the nature of cellular ADP-ribosyltransferase from rat liver specific for elongation factor 2.
    Sayhan O; Ozdemirli M; Nurten R; Bermek E
    Biochem Biophys Res Commun; 1986 Sep; 139(3):1210-4. PubMed ID: 3094526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.