BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 1313463)

  • 1. Manifestations of intense noise stimulation on spontaneous otoacoustic emission and threshold microstructure: experiment and model.
    Furst M; Reshef I; Attias J
    J Acoust Soc Am; 1992 Feb; 91(2):1003-14. PubMed ID: 1313463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of spontaneous otoacoustic emissions (SOAE) on acoustic distortion product input/output functions: does the medial efferent system act differently in the vicinity of an SOAE?
    Moulin A; Collet L; Morgon A
    Acta Otolaryngol; 1992; 112(2):210-4. PubMed ID: 1604981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evoked acoustic emissions and cochlear microphonics in the mustache bat, Pteronotus parnellii.
    Kössl M; Vater M
    Hear Res; 1985; 19(2):157-70. PubMed ID: 4055535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous otoacoustic emissions, threshold microstructure, and psychophysical tuning over a wide frequency range in humans.
    Baiduc RR; Lee J; Dhar S
    J Acoust Soc Am; 2014 Jan; 135(1):300-14. PubMed ID: 24437770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of disappearing and reappearing spontaneous otoacoustic emissions on one subject's threshold microstructure.
    Smurzynski J; Probst R
    Hear Res; 1998 Jan; 115(1-2):197-205. PubMed ID: 9472748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronization of spontaneous otoacoustic emissions to a 2f1-f2 distortion product.
    van Dijk P; Wit HP
    J Acoust Soc Am; 1990 Aug; 88(2):850-6. PubMed ID: 2212310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavior of spontaneous otoacoustic emissions following intense ipsilateral acoustic stimulation.
    Norton SJ; Mott JB; Champlin CA
    Hear Res; 1989 Apr; 38(3):243-58. PubMed ID: 2708166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intense sounds may alter the mechanical properties of the cochlear partition.
    McFadden D
    J Acoust Soc Am; 1983 Aug; 74(2):447-55. PubMed ID: 6619422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Comparison of methods for early detection of noise vulnerability of the inner ear. Amplitude reduction of otoacoustic emissions are most sensitive at submaximal noise impulse exposure].
    Plinkert PK; Hemmert W; Zenner HP
    HNO; 1995 Feb; 43(2):89-97. PubMed ID: 7713771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous Otoacoustic Emissions in
    Cheatham MA; Zhou Y; Goodyear RJ; Dallos P; Richardson GP
    eNeuro; 2018; 5(6):. PubMed ID: 30627650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some effects of tonal fatiguing on spontaneous and distortion-product otoacoustic emissions.
    Cianfrone G; Mattia M; Cervellini M; Musacchio A
    Br J Audiol; 1993 Apr; 27(2):123-30. PubMed ID: 8220278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in spontaneous otoacoustic emissions produced by acoustic stimulation of the contralateral ear.
    Mott JB; Norton SJ; Neely ST; Warr WB
    Hear Res; 1989 Apr; 38(3):229-42. PubMed ID: 2708165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Additional findings on heritability and prenatal masculinization of cochlear mechanisms: click-evoked otoacoustic emissions.
    McFadden D; Loehlin JC; Pasanen EG
    Hear Res; 1996 Aug; 97(1-2):102-19. PubMed ID: 8844191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous otoacoustic emissions and sensori-neural hearing loss.
    Moulin A; Collet L; Delli D; Morgon A
    Acta Otolaryngol; 1991; 111(5):835-41. PubMed ID: 1759568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structural and functional consequences of acoustic injury in the cochlea and peripheral auditory system: a five year update.
    Saunders JC; Cohen YE; Szymko YM
    J Acoust Soc Am; 1991 Jul; 90(1):136-46. PubMed ID: 1880281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What is the cochlear place code for pitch?
    Zwislocki JJ
    Acta Otolaryngol; 1991; 111(2):256-62. PubMed ID: 2068911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of spontaneous and evoked otoacoustic emissions and associated psychoacoustic microstructure by aspirin consumption.
    Long GR; Tubis A
    J Acoust Soc Am; 1988 Oct; 84(4):1343-53. PubMed ID: 3198870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves.
    Shera CA
    J Acoust Soc Am; 2003 Jul; 114(1):244-62. PubMed ID: 12880039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics.
    Epp B; Verhey JL; Mauermann M
    J Acoust Soc Am; 2010 Oct; 128(4):1870-83. PubMed ID: 20968359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.