These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 1313463)

  • 21. Are spontaneous otoacoustic emissions generated by self-sustained cochlear oscillators?
    Talmadge CL; Tubis A; Wit HP; Long GR
    J Acoust Soc Am; 1991 May; 89(5):2391-9. PubMed ID: 1860998
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intensity-dependent peak shift in cochlear transfer functions at the cellular level, its elimination by sound exposure, and its possible underlying mechanisms.
    Zhang M; Zwislocki JJ
    Hear Res; 1996 Jul; 96(1-2):46-58. PubMed ID: 8817306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparative study on the effect of pure-tone exposure of the guinea pig cochlea.
    Hotta S; Sugisawa T; Itoh T; Hasebe M; Yamamura K
    Eur Arch Otorhinolaryngol; 1996; 253(1-2):45-51. PubMed ID: 8932430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 2f1-f2 distortion product otoacoustic emissions in White Leghorn chickens (Gallus domesticus): effects of frequency ratio and relative level.
    Burkard R; Salvi R; Chen L
    Audiol Neurootol; 1996; 1(4):197-213. PubMed ID: 9390802
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Contralateral modification of transitory evoked otoacoustic emissions].
    Ganz M; von Specht H; Kevanishvili Z
    Laryngorhinootologie; 1997 May; 76(5):278-83. PubMed ID: 9280414
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterizing cochlear mechano-electric transduction with a nonlinear system identification technique: the influence of the middle ear.
    Choi CH; Chertoff ME; Yi X
    J Acoust Soc Am; 2002 Dec; 112(6):2898-909. PubMed ID: 12509011
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigations into the nature of the association between threshold microstructure and otoacoustic emissions.
    Long GR; Tubis A
    Hear Res; 1988 Nov; 36(2-3):125-38. PubMed ID: 3209487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of contralateral acoustic stimulation on spontaneous otoacoustic emissions.
    Harrison WA; Burns EM
    J Acoust Soc Am; 1993 Nov; 94(5):2649-58. PubMed ID: 8270741
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cochlear potentials in the Bronx waltzer mutant mouse.
    Bock GR; Yates GK; Deol MS
    Neurosci Lett; 1982 Dec; 34(1):19-25. PubMed ID: 6298667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-linear aspects of outer hair cell transduction and the temporary threshold shifts after acoustic trauma.
    Patuzzi R
    Audiol Neurootol; 2002; 7(1):17-20. PubMed ID: 11914520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impulse noise: some definitions, physical acoustics and other considerations.
    Hamernik RP; Hsueh KD
    J Acoust Soc Am; 1991 Jul; 90(1):189-96. PubMed ID: 1880288
    [No Abstract]   [Full Text] [Related]  

  • 32. An active process in cochlear mechanics.
    Davis H
    Hear Res; 1983 Jan; 9(1):79-90. PubMed ID: 6826470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of otoacoustic emissions in gerbil: evidence for micromechanical changes underlying development of the place code.
    Norton SJ; Bargones JY; Rubel EW
    Hear Res; 1991 Jan; 51(1):73-91. PubMed ID: 2013547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensitive response to low-frequency cochlear distortion products in the auditory midbrain.
    Abel C; Kössl M
    J Neurophysiol; 2009 Mar; 101(3):1560-74. PubMed ID: 19036870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A parametric study of cochlear input impedance.
    Puria S; Allen JB
    J Acoust Soc Am; 1991 Jan; 89(1):287-309. PubMed ID: 2002170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Measuring of spontaneous otoacoustic emissions of adolescence and its significance].
    Yu H; Yu D; Ding G
    Lin Chuang Er Bi Yan Hou Ke Za Zhi; 1999 Jul; 13(7):303-4. PubMed ID: 12541344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of impulse intensity and the number of impulses on hearing and cochlear pathology in the chinchilla.
    Hamernik RP; Patterson JH; Salvi RJ
    J Acoust Soc Am; 1987 Apr; 81(4):1118-29. PubMed ID: 3571729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the cochlear microphonic to a low-frequency tone embedded in filtered noise.
    Chertoff ME; Earl BR; Diaz FJ; Sorensen JL
    J Acoust Soc Am; 2012 Nov; 132(5):3351-62. PubMed ID: 23145616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evoked otoacoustic emissions as cochlear Bragg reflections.
    Strube HW
    Hear Res; 1989 Mar; 38(1-2):35-45. PubMed ID: 2708158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Oto-acoustic emissions and their significance for inner ear research].
    Fritze W; Köhler W
    Laryngol Rhinol Otol (Stuttg); 1986 Nov; 65(11):600-3. PubMed ID: 3100888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.