These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 1313491)

  • 1. Development of topographic order in the mammalian retinocollicular projection.
    Simon DK; O'Leary DD
    J Neurosci; 1992 Apr; 12(4):1212-32. PubMed ID: 1313491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship of retinotopic ordering of axons in the optic pathway to the formation of visual maps in central targets.
    Simon DK; O'Leary DD
    J Comp Neurol; 1991 May; 307(3):393-404. PubMed ID: 1856329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order.
    Nakamura H; O'Leary DD
    J Neurosci; 1989 Nov; 9(11):3776-95. PubMed ID: 2585055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limited topographic specificity in the targeting and branching of mammalian retinal axons.
    Simon DK; O'Leary DD
    Dev Biol; 1990 Jan; 137(1):125-34. PubMed ID: 1688537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of position along the medial-lateral axis of the superior colliculus on the topographic targeting and survival of retinal axons.
    Simon DK; O'Leary DD
    Brain Res Dev Brain Res; 1992 Oct; 69(2):167-72. PubMed ID: 1385014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity in the development of topographic order in the mammalian retinocollicular projection.
    Simon DK; Roskies AL; O'Leary DD
    Dev Biol; 1994 Apr; 162(2):384-93. PubMed ID: 8150202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topographic specificity in the retinocollicular projection of the developing ferret: an anterograde tracing study.
    Chalupa LM; Snider CJ
    J Comp Neurol; 1998 Mar; 392(1):35-47. PubMed ID: 9482231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational modeling of retinotopic map development to define contributions of EphA-ephrinA gradients, axon-axon interactions, and patterned activity.
    Yates PA; Holub AD; McLaughlin T; Sejnowski TJ; O'Leary DD
    J Neurobiol; 2004 Apr; 59(1):95-113. PubMed ID: 15007830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of retinal axons in vivo and in vitro to position-encoding molecules in the embryonic superior colliculus.
    Simon DK; O'Leary DD
    Neuron; 1992 Nov; 9(5):977-89. PubMed ID: 1419004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinotopic order in the optic nerve and superior colliculus during development of the retinocollicular projection in the wallaby (Macropus eugenii).
    Ding Y; Marotte LR
    Anat Embryol (Berl); 1997 Aug; 196(2):141-58. PubMed ID: 9278159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of topographic retinal axon branching by inhibitory membrane-bound molecules.
    Roskies AL; O'Leary DD
    Science; 1994 Aug; 265(5173):799-803. PubMed ID: 8047886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retroviral misexpression of engrailed genes in the chick optic tectum perturbs the topographic targeting of retinal axons.
    Friedman GC; O'Leary DD
    J Neurosci; 1996 Sep; 16(17):5498-509. PubMed ID: 8757262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topographic targeting errors in the retinocollicular projection and their elimination by selective ganglion cell death.
    O'Leary DD; Fawcett JW; Cowan WM
    J Neurosci; 1986 Dec; 6(12):3692-705. PubMed ID: 3794796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The initial stages of development of the retinocollicular projection in the wallaby (Macropus eugenii): distribution of ganglion cells in the retina and their axons in the superior colliculus.
    Ding Y; Marotte LR
    Anat Embryol (Berl); 1996 Sep; 194(3):301-17. PubMed ID: 8849677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topographic-specific axon branching controlled by ephrin-As is the critical event in retinotectal map development.
    Yates PA; Roskies AL; McLaughlin T; O'Leary DD
    J Neurosci; 2001 Nov; 21(21):8548-63. PubMed ID: 11606643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of retinotopic map development: Ephs, ephrins, and spontaneous correlated retinal activity.
    O'Leary DD; McLaughlin T
    Prog Brain Res; 2005; 147():43-65. PubMed ID: 15581697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific routing of retinal ganglion cell axons at the mammalian optic chiasm during embryonic development.
    Sretavan DW
    J Neurosci; 1990 Jun; 10(6):1995-2007. PubMed ID: 2162389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo retinotopic mapping of superior colliculus using manganese-enhanced magnetic resonance imaging.
    Chan KC; Li J; Kau P; Zhou IY; Cheung MM; Lau C; Yang J; So KF; Wu EX
    Neuroimage; 2011 Jan; 54(1):389-95. PubMed ID: 20633657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMDA receptor agonist and antagonists alter retinal ganglion cell arbor structure in the developing frog retinotectal projection.
    Cline HT; Constantine-Paton M
    J Neurosci; 1990 Apr; 10(4):1197-216. PubMed ID: 2158526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental period for N-methyl-D-aspartate (NMDA) receptor-dependent synapse elimination correlated with visuotopic map refinement.
    Colonnese MT; Constantine-Paton M
    J Comp Neurol; 2006 Feb; 494(5):738-51. PubMed ID: 16374812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.