These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
66 related articles for article (PubMed ID: 1313654)
1. Inhibition of Ca2+ and K+ currents by "antifreeze" proteins. Rubinsky B; Mattioli M; Arav A; Barboni B; Fletcher GL Am J Physiol; 1992 Mar; 262(3 Pt 2):R542-5. PubMed ID: 1313654 [TBL] [Abstract][Full Text] [Related]
2. Hypothermic protection--a fundamental property of "antifreeze" proteins. Rubinsky B; Arav A; Fletcher GL Biochem Biophys Res Commun; 1991 Oct; 180(2):566-71. PubMed ID: 1953726 [TBL] [Abstract][Full Text] [Related]
3. [Comprehensive study on the membrane currents of porcine granulosa cells in culture]. Kusaka M Hokkaido Igaku Zasshi; 1994 Mar; 69(2):258-72. PubMed ID: 8157251 [TBL] [Abstract][Full Text] [Related]
4. Rapid amyloid fibril formation by a winter flounder antifreeze protein requires specific interaction with ice. Dubé A; Leggiadro C; Ewart KV FEBS Lett; 2016 May; 590(9):1335-44. PubMed ID: 27086686 [TBL] [Abstract][Full Text] [Related]
6. Effect of antifreeze proteins on the motility of ram spermatozoa. Payne SR; Oliver JE; Upreti GC Cryobiology; 1994 Apr; 31(2):180-4. PubMed ID: 8004998 [TBL] [Abstract][Full Text] [Related]
7. Enhanced survival of yeast expressing an antifreeze gene analogue after freezing. McKown RL; Warren GJ Cryobiology; 1991 Oct; 28(5):474-82. PubMed ID: 1752135 [TBL] [Abstract][Full Text] [Related]
8. Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Sicheri F; Yang DS Nature; 1995 Jun; 375(6530):427-31. PubMed ID: 7760940 [TBL] [Abstract][Full Text] [Related]
10. Effects of Winter Flounder Antifreeze Protein on the Growth of Ice Particles in an Ice Slurry Flow in Mini-Channels. Takeshita Y; Waku T; Wilson PW; Hagiwara Y Biomolecules; 2019 Feb; 9(2):. PubMed ID: 30781718 [TBL] [Abstract][Full Text] [Related]
11. Cryogenic protection of oocytes with antifreeze proteins. Arav A; Rubinsky B; Fletcher G; Seren E Mol Reprod Dev; 1993 Dec; 36(4):488-93. PubMed ID: 8305212 [TBL] [Abstract][Full Text] [Related]
12. Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes. Knight CA; Cheng CC; DeVries AL Biophys J; 1991 Feb; 59(2):409-18. PubMed ID: 2009357 [TBL] [Abstract][Full Text] [Related]
13. Effects of ruthenium red on membrane ionic currents in urinary bladder smooth muscle cells of the guinea-pig. Hirano M; Imaizumi Y; Muraki K; Yamada A; Watanabe M Pflugers Arch; 1998 Apr; 435(5):645-53. PubMed ID: 9479017 [TBL] [Abstract][Full Text] [Related]
15. Mechanical interactions between ice crystals and red blood cells during directional solidification. Ishiguro H; Rubinsky B Cryobiology; 1994 Oct; 31(5):483-500. PubMed ID: 7988158 [TBL] [Abstract][Full Text] [Related]
16. Nonequilibrium antifreeze peptides and the recrystallization of ice. Knight CA; Wen D; Laursen RA Cryobiology; 1995 Feb; 32(1):23-34. PubMed ID: 7697996 [TBL] [Abstract][Full Text] [Related]
17. Fish antifreeze proteins block Ca entry into rabbit parietal cells. Negulescu PA; Rubinsky B; Fletcher GL; Machen TE Am J Physiol; 1992 Dec; 263(6 Pt 1):C1310-3. PubMed ID: 1476172 [TBL] [Abstract][Full Text] [Related]
18. Hyperactive antifreeze protein in a fish. Marshall CB; Fletcher GL; Davies PL Nature; 2004 May; 429(6988):153. PubMed ID: 15141201 [TBL] [Abstract][Full Text] [Related]
19. Muscarinic activation inhibits T-type Ca2+ current in hen granulosa cells. Wan X; Désilets M; Soboloff J; Morris C; Tsang BK Endocrinology; 1996 Jun; 137(6):2514-21. PubMed ID: 8641205 [TBL] [Abstract][Full Text] [Related]
20. Modulation of maxi-K+ channels by voltage-dependent Ca2+ channels and methacholine in single airway myocytes. Wang YX; Fleischmann BK; Kotlikoff MI Am J Physiol; 1997 Apr; 272(4 Pt 1):C1151-9. PubMed ID: 9142839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]