These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 13137988)

  • 1. [Application of potato pulp and of sulfite bases in production of fodder yeast].
    BUJAK S
    Acta Microbiol Pol (1952); 1952; 1(1):65-87. PubMed ID: 13137988
    [No Abstract]   [Full Text] [Related]  

  • 2. [Production of fodder yeast on hydrolysates from preliminary hydrolysis of pine wood by sulfur method].
    FAKUBOWSKA F; MOKRZYCKI F; NIEMYSKI K; BEDNAREK Z
    Acta Microbiol Pol (1952); 1953; 2(2-3):177-96. PubMed ID: 13138017
    [No Abstract]   [Full Text] [Related]  

  • 3. [Effect of SSU1 multi-copy expression on Saccharomyces cerevisiae sulphite production].
    Chen Y; Shen S; Wang Y; Xiao D
    Wei Sheng Wu Xue Bao; 2008 Dec; 48(12):1609-15. PubMed ID: 19271535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freeze-dried Saccharomyces cerevisiae cells immobilized on potato pieces for low-temperature winemaking.
    Kandylis P; Dimitrellou D; Lymnaiou P; Koutinas AA
    Appl Biochem Biotechnol; 2014 Jun; 173(3):716-30. PubMed ID: 24699815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the dates of extraction on the quality of potato pulp.
    Saito K; Noda T; Tsuda S; Mori M; Hasa Y; Kito H; Oda Y
    Bioresour Technol; 2006 Dec; 97(18):2470-3. PubMed ID: 16324844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid identification of potential drought tolerance genes from Solanum tuberosum by using a yeast functional screening method.
    Kappachery S; Yu JW; Baniekal-Hiremath G; Park SW
    C R Biol; 2013; 336(11-12):530-45. PubMed ID: 24296077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Purification of post-sulfite alkali and residues by means of yeasting].
    KARCZEWSKA H
    Acta Microbiol Pol (1952); 1959; 8():115-23. PubMed ID: 13853285
    [No Abstract]   [Full Text] [Related]  

  • 8. Utilization of fodder yeast and agro-industrial by-products in production of spores and biologically - active endotoxins from Bacillus thuringiensis.
    Salama HS; Foda MS; Selim MH; El-Sharaby A
    Zentralbl Mikrobiol; 1983; 138(7):553-63. PubMed ID: 6666415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of total sulfite in shrimp, potatoes, dried pineapple, and white wine by flow injection analysis: collaborative study.
    Sullivan JJ; Hollingworth TA; Wekell MM; Meo VA; Saba HH; Etemad-Moghadam A; Eklund C; Phillips JG; Gump BH
    J Assoc Off Anal Chem; 1990; 73(1):35-42. PubMed ID: 2312511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfur and adenine metabolisms are linked, and both modulate sulfite resistance in wine yeast.
    Aranda A; Jiménez-Martí E; Orozco H; Matallana E; Del Olmo M
    J Agric Food Chem; 2006 Aug; 54(16):5839-46. PubMed ID: 16881685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased potato tuber size resulting from apoplastic expression of a yeast invertase.
    Sonnewald U; Hajirezaei MR; Kossmann J; Heyer A; Trethewey RN; Willmitzer L
    Nat Biotechnol; 1997 Aug; 15(8):794-7. PubMed ID: 9255797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of ethanol directly from potato starch by mixed culture of Saccharomyces cerevisiae and Aspergillus niger using electrochemical bioreactor.
    Jeon BY; Kim DH; Na BK; Ahn DH; Park DH
    J Microbiol Biotechnol; 2008 Mar; 18(3):545-51. PubMed ID: 18388475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive evolution of Saccharomyces cerevisiae to generate strains with enhanced glycerol production.
    Kutyna DR; Varela C; Stanley GA; Borneman AR; Henschke PA; Chambers PJ
    Appl Microbiol Biotechnol; 2012 Feb; 93(3):1175-84. PubMed ID: 21989563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic hydrolysis of potato pulp.
    Lesiecki M; Białas W; Lewandowicz G
    Acta Sci Pol Technol Aliment; 2012; 11(1):53-9. PubMed ID: 22230975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Experiments on the production of new yeast strains by crossing].
    GORZYNSKA J
    Acta Microbiol Pol (1952); 1957; 6(2):189-206. PubMed ID: 13469295
    [No Abstract]   [Full Text] [Related]  

  • 16. Macroscopic modelling of bioethanol production from potato peel wastes in batch cultures supplemented with inorganic nitrogen.
    Richelle A; Ben Tahar I; Hassouna M; Bogaerts P
    Bioprocess Biosyst Eng; 2015 Sep; 38(9):1819-33. PubMed ID: 26059818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic engineering of drought resistant potato plants by introduction of the trehalose-6-phosphate synthase (TPS1) gene from Saccharomyces cerevisiae.
    Yeo ET; Kwon HB; Han SE; Lee JT; Ryu JC; Byu MO
    Mol Cells; 2000 Jun; 10(3):263-8. PubMed ID: 10901163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into an ancient antibrowning agent: formation of sulfophenolics in sodium hydrogen sulfite-treated potato extracts.
    Narváez-Cuenca CE; Kuijpers TF; Vincken JP; de Waard P; Gruppen H
    J Agric Food Chem; 2011 Sep; 59(18):10247-55. PubMed ID: 21854040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of StERF transcription factor genes from potato (Solanum tuberosum L.).
    Wang Z; Zhang N; Zhou X; Fan Q; Si H; Wang D
    C R Biol; 2015 Apr; 338(4):219-26. PubMed ID: 25814424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein enrichment of potato processing waste through yeast fermentation.
    Gélinas P; Barrette J
    Bioresour Technol; 2007 Mar; 98(5):1138-43. PubMed ID: 16782332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.