These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 1313940)

  • 1. Changes in responsiveness of the aorta to vasorelaxant agents in genetically diabetic rats: a study in WBN/Kob rats.
    Miyata N; Yamaura H; Tsuchida K; Otomo S; Kamata K; Kasuya Y
    Life Sci; 1992; 50(18):1363-9. PubMed ID: 1313940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of endothelial cells in relaxation and contraction responses of the aorta to isoproterenol in naive and streptozotocin-induced diabetic rats.
    Kamata K; Miyata N; Kasuya Y
    J Pharmacol Exp Ther; 1989 Jun; 249(3):890-4. PubMed ID: 2543815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional changes in potassium channels in aortas from rats with streptozotocin-induced diabetes.
    Kamata K; Miyata N; Kasuya Y
    Eur J Pharmacol; 1989 Jul; 166(2):319-23. PubMed ID: 2529128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium channel opening properties of a novel compound, NIP-121, cromakalim and nicorandil in rat aorta and portal vein.
    Masuda Y; Arakawa C; Yamashita T; Miyajima M; Shigenobu K; Kasuya Y; Tanaka S
    Eur J Pharmacol; 1991 Apr; 195(3):323-31. PubMed ID: 1831135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potassium channel openers relax A23187-induced nifedipine-resistant contraction of rat aorta.
    Yamashita T; Masuda Y; Tanaka S
    J Cardiovasc Pharmacol; 1994 Dec; 24(6):914-20. PubMed ID: 7898074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of relaxation and repolarization mechanisms of nicorandil in rat mesenteric artery.
    Fujiwara T; Angus JA
    Br J Pharmacol; 1996 Dec; 119(8):1549-56. PubMed ID: 8982500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potentiating effect of nicorandil, an antianginal agent, on relaxation induced by isoproterenol in isolated rat aorta: involvement of cyclic GMP-inhibitable cyclic AMP phosphodiesterase.
    Satake N; Zhou Q; Morikawa M; Inoue M; Shibata S
    J Cardiovasc Pharmacol; 1995 Mar; 25(3):489-94. PubMed ID: 7769818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the vascular relaxant effects of ATP-dependent K+ channel openers on aorta and pulmonary artery isolated from spontaneously hypertensive and Wistar-Kyoto rats.
    Kwan YW; To KW; Lau WM; Tsang SH
    Eur J Pharmacol; 1999 Jan; 365(2-3):241-51. PubMed ID: 9988108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. K+ channel opening mediates the vasorelaxant effects of nicorandil in the intact vascular system.
    Cavero I; Pratz J; Mondot S
    Z Kardiol; 1991; 80 Suppl 7():35-41. PubMed ID: 1838848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of relaxants working through different transduction mechanisms on the tonic contraction produced in rat aorta by 4 beta-phorbol dibutyrate.
    Obianime AW; Dale MM
    Br J Pharmacol; 1989 Jul; 97(3):647-56. PubMed ID: 2758236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impairment of endothelium-dependent relaxation of superior mesenteric artery in genetically diabetic WBN/Kob rats.
    Miyata N; Yamaura H; Tsuchida K; Okuyama S; Otomo S; Kamata K; Kasuya Y
    Can J Physiol Pharmacol; 1993; 71(3-4):297-300. PubMed ID: 8402395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative effects of K+ channel blockade on the vasorelaxant activity of cromakalim, pinacidil and nicorandil.
    Wilson C; Coldwell MC; Howlett DR; Cooper SM; Hamilton TC
    Eur J Pharmacol; 1988 Aug; 152(3):331-9. PubMed ID: 2851450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vasorelaxant mechanism of KRN2391 and nicorandil in porcine coronary arteries of different sizes.
    Miwa A; Kaneta S; Motoki K; Jinno Y; Kasai H; Okada Y; Fukushima H; Ogawa N
    Br J Pharmacol; 1993 Jul; 109(3):632-6. PubMed ID: 8358563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The inhibitory mechanisms of nicorandil in isolated rat urinary bladder and femoral artery.
    Zhou Q; Satake N; Shibata S
    Eur J Pharmacol; 1995 Jan; 273(1-2):153-9. PubMed ID: 7737309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of Ki1769, a novel vasodilator, in isolated rat aorta.
    Kashiwabara T; Nakajima T; Kasai H; Nakajima S; Izawa T; Ogawa N
    Arch Int Pharmacodyn Ther; 1994; 327(2):175-83. PubMed ID: 7979826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytoplasmic calcium and the relaxation of canine coronary arterial smooth muscle produced by cromakalim, pinacidil and nicorandil.
    Yanagisawa T; Teshigawara T; Taira N
    Br J Pharmacol; 1990 Sep; 101(1):157-65. PubMed ID: 2149290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the development of tolerance to nitroglycerin in aortic preparations isolated from non-diabetic and diabetic rats.
    Matsuzaki T; Sakanashi M
    Heart Vessels; 1992; 7(1):1-7. PubMed ID: 1533858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD-832, a new dihydropyridine derivative with both nitrate-like and Ca2+ channel antagonist vasodilator activities.
    Miyata N; Yamaura H; Tanaka M; Takahashi K; Tsuchida K; Otomo S
    Eur J Pharmacol; 1993 Nov; 249(2):141-9. PubMed ID: 8287896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of peroxynitrite on the reactivity of diabetic rat aorta.
    Zobali F; Cakici I; Karasu C
    Pharmacology; 2001 Jul; 63(1):58-64. PubMed ID: 11408833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impaired contraction and relaxation in the aorta of streptozotocin-diabetic rats.
    Utkan T; Sarioglu Y; Yildirim S
    Pharmacology; 1998 Apr; 56(4):207-15. PubMed ID: 9566022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.