These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 1314046)

  • 1. Adaptations to high hydrostatic pressure.
    Somero GN
    Annu Rev Physiol; 1992; 54():557-77. PubMed ID: 1314046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical ecology of deep-sea animals.
    Somero GN
    Experientia; 1992 Jun; 48(6):537-43. PubMed ID: 1319350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure adaptation of Na+/K+-ATPase in gills of marine teleosts.
    Gibbs A; Somero GN
    J Exp Biol; 1989 May; 143():475-92. PubMed ID: 2543729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure-adaptive differences in proteolytic inactivation of M4-lactate dehydrogenase homologues from marine fishes.
    Hennessey JP; Siebenaller JF
    J Exp Zool; 1987 Jan; 241(1):9-15. PubMed ID: 3549968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth.
    Brown A; Thatje S
    Biol Rev Camb Philos Soc; 2014 May; 89(2):406-26. PubMed ID: 24118851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms.
    Yancey PH; Siebenaller JF
    J Exp Biol; 2015 Jun; 218(Pt 12):1880-96. PubMed ID: 26085665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment.
    Hazel JR; Williams EE
    Prog Lipid Res; 1990; 29(3):167-227. PubMed ID: 2131463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute combined pressure and temperature exposures on a shallow-water crustacean: novel insights into the stress response and high pressure neurological syndrome.
    Morris JP; Thatje S; Ravaux J; Shillito B; Fernando D; Hauton C
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Mar; 181():9-17. PubMed ID: 25433335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental adaptation of proteins: strategies for the conservation of critical functional and structural traits.
    Somero GN
    Comp Biochem Physiol A Comp Physiol; 1983; 76(3):621-33. PubMed ID: 6139233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular and functional adaptations in deep-sea hemoglobins.
    Hourdez S; Weber RE
    J Inorg Biochem; 2005 Jan; 99(1):130-41. PubMed ID: 15598497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative transcriptomic analysis of deep- and shallow-water barnacle species (Cirripedia, Poecilasmatidae) provides insights into deep-sea adaptation of sessile crustaceans.
    Gan Z; Yuan J; Liu X; Dong D; Li F; Li X
    BMC Genomics; 2020 Mar; 21(1):240. PubMed ID: 32183697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of a gene regulated by hydrostatic pressure in a deep-sea bacterium.
    Bartlett D; Wright M; Yayanos AA; Silverman M
    Nature; 1989 Nov; 342(6249):572-4. PubMed ID: 2479840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental Adaptation of Dihydrofolate Reductase from Deep-Sea Bacteria.
    Ohmae E; Gekko K; Kato C
    Subcell Biochem; 2015; 72():423-42. PubMed ID: 26174394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation of muscle pyruvate kinases to environmental temperatures and pressures.
    Low PS; Somero GN
    J Exp Zool; 1976 Oct; 198(1):1-11. PubMed ID: 824400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional determinants of temperature adaptation in enzymes of cold- versus warm-adapted mussels (Genus Mytilus).
    Lockwood BL; Somero GN
    Mol Biol Evol; 2012 Oct; 29(10):3061-70. PubMed ID: 22491035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-pressure adaptation of muscle proteins from deep-sea fishes, Coryphaenoides yaquinae and C. armatus.
    Morita T
    Ann N Y Acad Sci; 2010 Feb; 1189():91-4. PubMed ID: 20233373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High hydrostatic pressure effects in vivo: changes in cell morphology, microtubule assembly, and actin organization.
    Bourns B; Franklin S; Cassimeris L; Salmon ED
    Cell Motil Cytoskeleton; 1988; 10(3):380-90. PubMed ID: 3052872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies.
    Glover AG; Gooday AJ; Bailey DM; Billett DS; Chevaldonné P; Colaço A; Copley J; Cuvelier D; Desbruyères D; Kalogeropoulou V; Klages M; Lampadariou N; Lejeusne C; Mestre NC; Paterson GL; Perez T; Ruhl H; Sarrazin J; Soltwedel T; Soto EH; Thatje S; Tselepides A; Van Gaever S; Vanreusel A
    Adv Mar Biol; 2010; 58():1-95. PubMed ID: 20959156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homeoviscous adaptation under pressure: the pressure dependence of membrane order in brain myelin membranes of deep-sea fish.
    Behan MK; Macdonald AG; Jones GR; Cossins AR
    Biochim Biophys Acta; 1992 Jan; 1103(2):317-23. PubMed ID: 1543716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of ontogeny in physiological tolerance: decreasing hydrostatic pressure tolerance with development in the northern stone crab Lithodes maja.
    Munro C; Morris JP; Brown A; Hauton C; Thatje S
    Proc Biol Sci; 2015 Jun; 282(1809):20150577. PubMed ID: 26041343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.