These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 13140518)

  • 1. [Nature and functional mechanism of spinal locomotor center].
    CARDIN A
    Boll Soc Ital Biol Sper; 1953 Jul; 29(7):1363-5. PubMed ID: 13140518
    [No Abstract]   [Full Text] [Related]  

  • 2. [Locomotor activity in chronic spinal dogs].
    CARDIN A
    Boll Soc Ital Biol Sper; 1953 Jul; 29(7):1362-3. PubMed ID: 13140517
    [No Abstract]   [Full Text] [Related]  

  • 3. Location of spinal cord pathways that control hindlimb movement amplitude and interlimb coordination during voluntary swimming in turtles.
    Samara RF; Currie SN
    J Neurophysiol; 2008 Apr; 99(4):1953-68. PubMed ID: 18272877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Reflection on the physiological mechanisms of movements controlled by the spinal cord-brain interaction].
    Nádvorník P; Cierny G
    Cas Lek Cesk; 2007; 146(11):834-6. PubMed ID: 18069207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of left-right reciprocal coupling in the spinal cord of larval lamprey abolishes brain-initiated locomotor activity.
    Jackson AW; Horinek DF; Boyd MR; McClellan AD
    J Neurophysiol; 2005 Sep; 94(3):2031-44. PubMed ID: 16000521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locomotor pattern in the adult zebrafish spinal cord in vitro.
    Gabriel JP; Mahmood R; Walter AM; Kyriakatos A; Hauptmann G; Calabrese RL; El Manira A
    J Neurophysiol; 2008 Jan; 99(1):37-48. PubMed ID: 17977928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monoaminergic establishment of rostrocaudal gradients of rhythmicity in the neonatal mouse spinal cord.
    Christie KJ; Whelan PJ
    J Neurophysiol; 2005 Aug; 94(2):1554-64. PubMed ID: 15829596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of commissural projections to bulbospinal activation of locomotion in the in vitro neonatal rat spinal cord.
    Cowley KC; Zaporozhets E; Joundi RA; Schmidt BJ
    J Neurophysiol; 2009 Mar; 101(3):1171-8. PubMed ID: 19118107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordinated network functioning in the spinal cord: an evolutionary perspective.
    Falgairolle M; de Seze M; Juvin L; Morin D; Cazalets JR
    J Physiol Paris; 2006; 100(5-6):304-16. PubMed ID: 17658245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serotonin refines the locomotor-related alternations in the in vitro neonatal rat spinal cord.
    Pearlstein E; Ben Mabrouk F; Pflieger JF; Vinay L
    Eur J Neurosci; 2005 Mar; 21(5):1338-46. PubMed ID: 15813943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low micromolar concentrations of 4-aminopyridine facilitate fictive locomotion expressed by the rat spinal cord in vitro.
    Taccola G; Nistri A
    Neuroscience; 2004; 126(2):511-20. PubMed ID: 15207368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SSFSE sequence functional MRI of the human cervical spinal cord with complex finger tapping.
    Xie CH; Kong KM; Guan JT; Chen YX; He JK; Qi WL; Wang XJ; Shen ZW; Wu RH
    Eur J Radiol; 2009 Apr; 70(1):1-6. PubMed ID: 18353589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement.
    Seki K; Perlmutter SI; Fetz EE
    Nat Neurosci; 2003 Dec; 6(12):1309-16. PubMed ID: 14625555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deciphering the organization and modulation of spinal locomotor central pattern generators.
    Gordon IT; Whelan PJ
    J Exp Biol; 2006 Jun; 209(Pt 11):2007-14. PubMed ID: 16709903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Direct response of functional and recuperating capacity of anterior horn ganglion cells to adrenalin and noradrenalin. III].
    BLASIUS W; THRON HL
    Z Biol; 1954; 107(3):161-85. PubMed ID: 13206116
    [No Abstract]   [Full Text] [Related]  

  • 16. [On the metabolic nature of automatic function of nerve cells (according to an example of the spinal center of the lymph heart)].
    ESAKOV AI
    Zh Obshch Biol; 1961; 22():136-43. PubMed ID: 13697304
    [No Abstract]   [Full Text] [Related]  

  • 17. Origin of excitatory drive to a spinal locomotor network.
    Roberts A; Li WC; Soffe SR; Wolf E
    Brain Res Rev; 2008 Jan; 57(1):22-8. PubMed ID: 17825424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity of spinal cord locomotor networks and contribution of cation-chloride cotransporters.
    Vinay L; Jean-Xavier C
    Brain Res Rev; 2008 Jan; 57(1):103-10. PubMed ID: 17949820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of spinal 5-HT1A and 5-HT7 receptors to locomotor-like movement induced by 8-OH-DPAT in spinal cord-transected mice.
    Landry ES; Lapointe NP; Rouillard C; Levesque D; Hedlund PB; Guertin PA
    Eur J Neurosci; 2006 Jul; 24(2):535-46. PubMed ID: 16836640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A reliable technique for the induction of locomotor-like activity in the in vitro neonatal rat spinal cord using brainstem electrical stimulation.
    Zaporozhets E; Cowley KC; Schmidt BJ
    J Neurosci Methods; 2004 Oct; 139(1):33-41. PubMed ID: 15351519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.