These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 131430)

  • 1. [Maximum velocity of load-free shortening Vmax, myocardial capacity and "contractility indices" in the hypertrophic myocardium].
    Jacob R; Kämmereit A; Medugorac I; Wendt-Gallitelli MF
    Z Kardiol; 1976 Mar; 65(4):392-400. PubMed ID: 131430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Unloaded shortening velocity of the myocardium as an index of contractility (author's transl)].
    Jacob R; Gülch RW; Ebrecht G
    Med Klin; 1978 Mar; 73(9):317-20. PubMed ID: 147382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The force-velocity relation and end systolic tension-length relation of hypertrophied myocardium in renal hypertensive rats].
    Ding XL; Li Y
    Sheng Li Xue Bao; 1991 Oct; 43(5):457-63. PubMed ID: 1839082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Is secondary myocardial hypertrophy a physiological or pathological adaptive mechanism?].
    Krayenbühl HP
    Z Kardiol; 1982 Aug; 71(8):489-96. PubMed ID: 6215776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat, mechanics, and myosin ATPase in normal and hypertrophied heart muscle.
    Alpert NR; Mulieri LA
    Fed Proc; 1982 Feb; 41(2):192-8. PubMed ID: 6460650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determinants of energy utilization in the activated myocardium.
    Alpert NR; Mulieri LA
    Fed Proc; 1986 Oct; 45(11):2597-600. PubMed ID: 2944770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Changes in myosin isoenzymes composition and the maximum shortening velocity in hypertrophic left ventricular muscle of rats].
    Liu LQ; Li YX
    Sheng Li Xue Bao; 1996 Aug; 48(4):377-84. PubMed ID: 9389201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional consequences of cardiac hypertrophy and dilatation.
    Jacob R; Brändle M; Dierberger B; Rupp H
    Basic Res Cardiol; 1991; 86 Suppl 1():113-30. PubMed ID: 1827978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiologic versus pathologic hypertrophy and the pressure-overloaded myocardium.
    Weber KT; Clark WA; Janicki JS; Shroff SG
    J Cardiovasc Pharmacol; 1987; 10 Suppl 6():S37-50. PubMed ID: 2485029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional significance of contractile proteins in cardiac hypertrophy and failure.
    Jacob R; Kissling G; Rupp H; Vogt M
    J Cardiovasc Pharmacol; 1987; 10 Suppl 6():S2-12. PubMed ID: 2485026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of atrial contraction by PKA and PKC during the compensated phase of eccentric cardiac hypertrophy.
    Haddad GE; Coleman BR; Zhao A; Blackwell KN
    Basic Res Cardiol; 2004 Sep; 99(5):317-27. PubMed ID: 15309409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Influence of long-term swimming training on the structure and enzyme activity of myosin in the rat myocardium (author's transl)].
    Medugorac I; Kämmereit A; Jacob R
    Hoppe Seylers Z Physiol Chem; 1975 Jul; 356(7):1161-71. PubMed ID: 127740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Regulation of cardiac output;an approximation at 3 levels: organic, cellular, and protein].
    Martíenz Caro D; Rodríguez García JA; Munguía L
    Rev Med Univ Navarra; 1999; 43(1):29-40. PubMed ID: 10386344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of acidosis on maximum shortening velocity and force-velocity relation of skinned rat cardiac muscle.
    Ricciardi L; Bottinelli R; Canepari M; Reggiani C
    J Mol Cell Cardiol; 1994 May; 26(5):601-7. PubMed ID: 8072014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myocardial function in different models of cardiac hypertrophy. An attempt at correlating mechanical, biochemical, and morphological parameters.
    Jacob R; Ebrecht G; Kämmereit A; Medugorac I; Wendt-Gallitelli MF
    Basic Res Cardiol; 1977; 72(2-3):160-7. PubMed ID: 140658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biology of myocardial adaptation to mechanical overload].
    Swynghedauw B
    Biomed Pharmacother; 1982; 36(5):233-5. PubMed ID: 6220749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATPase activity of the cross-linked complex between cardiac myosin subfragment 1 and actin in several models of chronic overloading. A new approach to the biochemistry of contractility.
    Lauer B; Van Thiem N; Swynghedauw B
    Circ Res; 1989 Jun; 64(6):1106-15. PubMed ID: 2524289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanical characteristics of hypertrophied rabbit cardiac muscle in the absence of congestive heart failure: the contractile and series elastic elements.
    Hamrell BB; Alpert NR
    Circ Res; 1977 Jan; 40(1):20-5. PubMed ID: 137085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the contractile performance of the hypertrophied myocardium from spontaneous hypertensive rats and normotensive infarcted rats.
    Mill JG; Novaes MA; Galon M; Nogueira JB; Vassallo DV
    Can J Physiol Pharmacol; 1998 Apr; 76(4):387-94. PubMed ID: 9795747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sarcomere shortening in pressure overload hypertrophy.
    Hamrell BB; Hultgren PB
    Fed Proc; 1986 Oct; 45(11):2591-6. PubMed ID: 2944769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.