These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 1314466)
1. Expression of the protease gene of equine infectious anemia virus in Escherichia coli: formation of the mature processed enzyme and specific cleavage of the gag precursor. Rushlow K; Peng XX; Montelaro RC; Shih DS Virology; 1992 May; 188(1):396-401. PubMed ID: 1314466 [TBL] [Abstract][Full Text] [Related]
2. Expression of functional protease and subviral particles by vaccinia virus containing equine infectious anaemia virus gag and 5' pol genes. McGuire TC; O'Rourke KI; Baszler TV; Leib SR; Brassfield AL; Davis WC J Gen Virol; 1994 Apr; 75 ( Pt 4)():895-900. PubMed ID: 8151302 [TBL] [Abstract][Full Text] [Related]
3. Extensive regions of pol are required for efficient human immunodeficiency virus polyprotein processing and particle maturation. Quillent C; Borman AM; Paulous S; Dauguet C; Clavel F Virology; 1996 May; 219(1):29-36. PubMed ID: 8623542 [TBL] [Abstract][Full Text] [Related]
4. Characterization and autoprocessing of precursor and mature forms of human immunodeficiency virus type 1 (HIV 1) protease purified from Escherichia coli. Strickler JE; Gorniak J; Dayton B; Meek T; Moore M; Magaard V; Malinowski J; Debouck C Proteins; 1989; 6(2):139-54. PubMed ID: 2695927 [TBL] [Abstract][Full Text] [Related]
5. Chemical and immunological characterizations of equine infectious anemia virus gag-encoded proteins. Henderson LE; Sowder RC; Smythers GW; Oroszlan S J Virol; 1987 Apr; 61(4):1116-24. PubMed ID: 3029406 [TBL] [Abstract][Full Text] [Related]
6. Expression and frameshifting but extremely inefficient proteolytic processing of the HIV-1 gag and pol gene products in stably transfected rodent cell lines. Moosmayer D; Reil H; Ausmeier M; Scharf JG; Hauser H; Jentsch KD; Hunsmann G Virology; 1991 Jul; 183(1):215-24. PubMed ID: 2053281 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of equine infectious anemia virus virulence by identification and removal of suboptimal nucleotides. Cook RF; Cook SJ; Berger SL; Leroux C; Ghabrial NN; Gantz M; Bolin PS; Mousel MR; Montelaro RC; Issel CJ Virology; 2003 Sep; 313(2):588-603. PubMed ID: 12954224 [TBL] [Abstract][Full Text] [Related]
8. Functional roles of equine infectious anemia virus Gag p9 in viral budding and infection. Chen C; Li F; Montelaro RC J Virol; 2001 Oct; 75(20):9762-70. PubMed ID: 11559809 [TBL] [Abstract][Full Text] [Related]
9. Characterization of equine infectious anemia virus dUTPase: growth properties of a dUTPase-deficient mutant. Threadgill DS; Steagall WK; Flaherty MT; Fuller FJ; Perry ST; Rushlow KE; Le Grice SF; Payne SL J Virol; 1993 May; 67(5):2592-600. PubMed ID: 8386267 [TBL] [Abstract][Full Text] [Related]
10. Covalent conjugation of the equine infectious anemia virus Gag with SUMO. Wang J; Wen S; Zhao R; Qi J; Liu Z; Li W; An J; Wood C; Wang Y Biochem Biophys Res Commun; 2017 May; 486(3):712-719. PubMed ID: 28342872 [TBL] [Abstract][Full Text] [Related]
12. Functional replacement and positional dependence of homologous and heterologous L domains in equine infectious anemia virus replication. Li F; Chen C; Puffer BA; Montelaro RC J Virol; 2002 Feb; 76(4):1569-77. PubMed ID: 11799151 [TBL] [Abstract][Full Text] [Related]
13. The HIV-1 gag precursor is processed via two pathways: implications for cytotoxicity. Kaplan AH; Swanstrom R Biomed Biochim Acta; 1991; 50(4-6):647-53. PubMed ID: 1801737 [TBL] [Abstract][Full Text] [Related]
14. Natural variation in HIV-1 protease, Gag p7 and p6, and protease cleavage sites within gag/pol polyproteins: amino acid substitutions in the absence of protease inhibitors in mothers and children infected by human immunodeficiency virus type 1. Barrie KA; Perez EE; Lamers SL; Farmerie WG; Dunn BM; Sleasman JW; Goodenow MM Virology; 1996 May; 219(2):407-16. PubMed ID: 8638406 [TBL] [Abstract][Full Text] [Related]
15. Expression, characterisation and mutagenesis of the aspartic proteinase from equine infectious anaemia virus. Powell DJ; Bur D; Wlodawer A; Gustchina A; Payne SL; Dunn BM; Kay J Eur J Biochem; 1996 Oct; 241(2):664-74. PubMed ID: 8917470 [TBL] [Abstract][Full Text] [Related]
16. Identification of proteolytic processing sites within the Gag and Pol polyproteins of feline immunodeficiency virus. Elder JH; Schnölzer M; Hasselkus-Light CS; Henson M; Lerner DA; Phillips TR; Wagaman PC; Kent SB J Virol; 1993 Apr; 67(4):1869-76. PubMed ID: 8383214 [TBL] [Abstract][Full Text] [Related]
17. Coding sequences upstream of the human immunodeficiency virus type 1 reverse transcriptase domain in Gag-Pol are not essential for incorporation of the Pr160(gag-pol) into virus particles. Chiu HC; Yao SY; Wang CT J Virol; 2002 Apr; 76(7):3221-31. PubMed ID: 11884546 [TBL] [Abstract][Full Text] [Related]
18. Human immunodeficiency virus protease expressed in Escherichia coli exhibits autoprocessing and specific maturation of the gag precursor. Debouck C; Gorniak JG; Strickler JE; Meek TD; Metcalf BW; Rosenberg M Proc Natl Acad Sci U S A; 1987 Dec; 84(24):8903-6. PubMed ID: 3321060 [TBL] [Abstract][Full Text] [Related]
19. Protein composition and morphology of human foamy virus intracellular cores and extracellular particles. Morozov VA; Copeland TD; Nagashima K; Gonda MA; Oroszlan S Virology; 1997 Feb; 228(2):307-17. PubMed ID: 9123838 [TBL] [Abstract][Full Text] [Related]
20. Autoprocessing of Drosophila copia gag precursor to generate a unique laminate structure in Escherichia coli. Yoshioka K; Kanda H; Kondo S; Togashi S; Miyake T; Shiba T FEBS Lett; 1991 Jul; 285(1):31-4. PubMed ID: 1648513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]