These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 13145279)

  • 21. Tetrodotoxin-sensitive component in action potential plateau of guinea pig Purkinje fibers: comparison with the papillary muscle.
    Aomine M
    Gen Pharmacol; 1989; 20(6):791-7. PubMed ID: 2591708
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Current thresholds and liminal size in excitation of heart muscle.
    Lindemans FW; Denier Van der Gon JJ
    Cardiovasc Res; 1978 Aug; 12(8):477-85. PubMed ID: 719660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immunoreactive atrial and brain natriuretic peptides are co-localized in Purkinje fibres but not in the innervation of the bovine heart conduction system.
    Hansson M; Forsgren S
    Histochem J; 1995 Mar; 27(3):222-30. PubMed ID: 7541029
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrophysiological actions of disopyramide phosphate on canine ventricular muscle and purkinje fibers.
    Kus T; Sasyniuk BI
    Circ Res; 1975 Dec; 37(6):844-54. PubMed ID: 1192576
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of l-penbutolol (Hoe 893d) on the transmembrane potentials of canine purkinje fibers and ventricular muscle fibers.
    Kodama I; Shimizu T; Iwamura N; Hirata Y; Toyama J; Yamada K
    Arch Int Pharmacodyn Ther; 1978 Feb; 231(2):232-42. PubMed ID: 25633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In situ Ca2+ dynamics of Purkinje fibers and its interconnection with subjacent ventricular myocytes.
    Hamamoto T; Tanaka H; Mani H; Tanabe T; Fujiwara K; Nakagami T; Horie M; Oyamada M; Takamatsu T
    J Mol Cell Cardiol; 2005 Apr; 38(4):561-9. PubMed ID: 15808833
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time course for reversal of electrophysiological and ultrastructural abnormalities in subendocardial Purkinje fibers surviving extensive myocardial infarction in dogs.
    Friedman PL; Fenoglio JJ; Wit AL
    Circ Res; 1975 Jan; 36(1):127-44. PubMed ID: 1116215
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential electrophysiological effects of amiodarone on ventricular muscle and Purkinje fibers in canine one-day-old myocardial infarction.
    Aomine M
    Gen Pharmacol; 1989; 20(6):785-90. PubMed ID: 2591707
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of alpha-adrenergic stimulation on intracellular sodium activity and automaticity in canine Purkinje fibers.
    Zaza A; Kline RP; Rosen MR
    Circ Res; 1990 Feb; 66(2):416-26. PubMed ID: 1967556
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrophysiological effects of tocainide on canine subendocardial Purkinje fibers surviving infarction.
    Kinnaird AA; Man RY
    Eur J Pharmacol; 1986 May; 124(1-2):135-41. PubMed ID: 3087761
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of the potassium channel activator, BRL 34915, on the action potential characteristics of canine cardiac Purkinje fibers.
    Bril A; Man RY
    J Pharmacol Exp Ther; 1990 Jun; 253(3):1090-6. PubMed ID: 2359018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The isolated rabbit heart and Purkinje fibers as models for identifying proarrhythmic liability.
    Roche M; Renauleaud C; Ballet V; Doubovetzky M; Guillon JM
    J Pharmacol Toxicol Methods; 2010; 61(3):238-50. PubMed ID: 20117224
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrophysiological effects of lidocaine on isolated guinea pig Purkinje fibers: comparison with its effects on papillary muscle.
    Aomine M
    Gen Pharmacol; 1989; 20(1):99-104. PubMed ID: 2707577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transmembrane potentials of canine cardiac Purkinje fibres as affected by prajmaline.
    Krassói I; Papp JG; Szekeres L
    Acta Physiol Hung; 1990; 75 Suppl():189-90. PubMed ID: 2371858
    [No Abstract]   [Full Text] [Related]  

  • 35. Cardiac expression of ryanodine receptor subtype 3; a strategic component in the intracellular Ca
    Daniels RE; Haq KT; Miller LS; Chia EW; Miura M; Sorrentino V; McGuire JJ; Stuyvers BD
    J Mol Cell Cardiol; 2017 Mar; 104():31-42. PubMed ID: 28111173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of high frequency stimulation on the membrane potential of isolated ventricular muscle and Purkinje fibers.
    Kodama I; Toyama J; Yamada K
    Jpn Circ J; 1981 Apr; 45(4):410-8. PubMed ID: 7218494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of new antiarrhythmic agent SS-68 on excitation conduction, electrical activity in Purkinje fibers and pulmonary veins: Assessment of safety and side effects risk.
    Bogus SK; Kuzmin VS; Abramochkin DV; Suzdalev KF; Galenko-Yaroshevsky PA
    J Pharmacol Sci; 2017 Mar; 133(3):122-129. PubMed ID: 28325557
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of metabolic inhibitors and second messengers upon Na(+)-H+ exchange in the sheep cardiac Purkinje fibre.
    Wu ML; Vaughan-Jones RD
    J Physiol; 1994 Jul; 478 ( Pt 2)(Pt 2):301-13. PubMed ID: 7525944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intracellular sodium and the positive inotropic effect of veratridine and cardiac glycoside in sheep Purkinje fibers.
    Brill DM; Wasserstrom JA
    Circ Res; 1986 Jan; 58(1):109-19. PubMed ID: 2417742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-micro-electrode voltage clamp experiments in calf cardiac Purkinje fibres: is slow inward current adequately measured?
    Kass RS; Siegelbaum SA; Tsien RW
    J Physiol; 1979 May; 290(2):201-25. PubMed ID: 469751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.