These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 1314540)
21. NADPH-dependent flavoenzymes catalyze one electron reduction of metal ions and molecular oxygen and generate hydroxyl radicals. Shi XL; Dalal NS FEBS Lett; 1990 Dec; 276(1-2):189-91. PubMed ID: 2176163 [TBL] [Abstract][Full Text] [Related]
22. The oxidation of NADH by tetravalent vanadium. Liochev S; Fridovich I Arch Biochem Biophys; 1987 Jun; 255(2):274-8. PubMed ID: 3036003 [TBL] [Abstract][Full Text] [Related]
23. One-electron reduction of chromate by NADPH-dependent glutathione reductase. Shi XL; Dalal NS J Inorg Biochem; 1990 Sep; 40(1):1-12. PubMed ID: 2178178 [TBL] [Abstract][Full Text] [Related]
24. Initiation of a superoxide-dependent chain oxidation of lactate dehydrogenase-bound NADH by oxidants of low and high reactivity. Petrat F; Bramey T; Kirsch M; De Groot H Free Radic Res; 2005 Oct; 39(10):1043-57. PubMed ID: 16298730 [TBL] [Abstract][Full Text] [Related]
25. Interaction of ferric complexes with rat liver nuclei to catalyze NADH-and NADPH-Dependent production of oxygen radicals. Kukiełka E; Puntarulo S; Cederbaum AI Arch Biochem Biophys; 1989 Sep; 273(2):319-30. PubMed ID: 2774554 [TBL] [Abstract][Full Text] [Related]
27. Oxidation of NADH by vanadium: kinetics, effects of ligands and role of H2O2 or O2. Stankiewicz PJ; Stern A; Davison AJ Arch Biochem Biophys; 1991 May; 287(1):8-17. PubMed ID: 1654805 [TBL] [Abstract][Full Text] [Related]
28. Importance of hydroxyl radical in the vanadium-stimulated oxidation of NADH. Keller RJ; Coulombe RA; Sharma RP; Grover TA; Piette LH Free Radic Biol Med; 1989; 6(1):15-22. PubMed ID: 2536340 [TBL] [Abstract][Full Text] [Related]
29. NADPH- and NADH-dependent oxygen radical generation by rat liver nuclei in the presence of redox cycling agents and iron. Kukiełka E; Cederbaum AI Arch Biochem Biophys; 1990 Dec; 283(2):326-33. PubMed ID: 2275546 [TBL] [Abstract][Full Text] [Related]
30. [NADH- and NADPH-dependent formation of superoxide radicals in liver nuclei]. Vartanian LS; Gurevich SM Biokhimiia; 1989 Jun; 54(6):1020-5. PubMed ID: 2551393 [TBL] [Abstract][Full Text] [Related]
31. Superoxide generation by lipoxygenase in the presence of NADH and NADPH. Roy P; Roy SK; Mitra A; Kulkarni AP Biochim Biophys Acta; 1994 Sep; 1214(2):171-9. PubMed ID: 7918597 [TBL] [Abstract][Full Text] [Related]
32. Subcellular accumulation and source of O Zhuang K; Shi D; Hu Z; Xu F; Chen Y; Shen Z Aquat Toxicol; 2019 Feb; 207():1-12. PubMed ID: 30500560 [TBL] [Abstract][Full Text] [Related]
33. Mechanism of O2- generation in reduction and oxidation cycle of ubiquinones in a model of mitochondrial electron transport systems. Sugioka K; Nakano M; Totsune-Nakano H; Minakami H; Tero-Kubota S; Ikegami Y Biochim Biophys Acta; 1988 Dec; 936(3):377-85. PubMed ID: 2848580 [TBL] [Abstract][Full Text] [Related]
34. Mechanism of H2O2 production in porcine thyroid cells: evidence for intermediary formation of superoxide anion by NADPH-dependent H2O2-generating machinery. Nakamura Y; Makino R; Tanaka T; Ishimura Y; Ohtaki S Biochemistry; 1991 May; 30(20):4880-6. PubMed ID: 1645182 [TBL] [Abstract][Full Text] [Related]
35. Vanadate-dependent oxidation of pyridine nucleotides in rat liver microsomal membranes. Coulombe RA; Briskin DP; Keller RJ; Thornley WR; Sharma RP Arch Biochem Biophys; 1987 Jun; 255(2):267-73. PubMed ID: 3647757 [TBL] [Abstract][Full Text] [Related]
36. On the mechanism of the Mn3(+)-induced neurotoxicity of dopamine:prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase. Segura-Aguilar J; Lind C Chem Biol Interact; 1989; 72(3):309-24. PubMed ID: 2557982 [TBL] [Abstract][Full Text] [Related]
37. Interaction of heme nonapeptide derived from cytochrome c with microsomal reductases. Végh M; Kramer M; Horváth I Biochim Biophys Acta; 1986 Jun; 882(1):6-11. PubMed ID: 3011109 [TBL] [Abstract][Full Text] [Related]
38. Electron leakage from the mitochondrial NADPH-adrenodoxin reductase-adrenodoxin-P450scc (cholesterol side chain cleavage) system. Hanukoglu I; Rapoport R; Weiner L; Sklan D Arch Biochem Biophys; 1993 Sep; 305(2):489-98. PubMed ID: 8396893 [TBL] [Abstract][Full Text] [Related]
39. Flavoenzymes reduce vanadium(V) and molecular oxygen and generate hydroxyl radical. Shi XL; Dalal NS Arch Biochem Biophys; 1991 Sep; 289(2):355-61. PubMed ID: 1654858 [TBL] [Abstract][Full Text] [Related]
40. Vanadate-induced cell growth regulation and the role of reactive oxygen species. Zhang Z; Huang C; Li J; Leonard SS; Lanciotti R; Butterworth L; Shi X Arch Biochem Biophys; 2001 Aug; 392(2):311-20. PubMed ID: 11488607 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]